Featured Research

from universities, journals, and other organizations

NASA Study Solves Ocean Plant Mystery

Date:
September 3, 2006
Source:
NASA/Goddard Space Flight Center
Summary:
A NASA-sponsored study shows that by using a new technique, scientists can determine what limits the growth of ocean algae, or phytoplankton, and how this affects Earth's climate.

This image shows where there is more or less plant life on our planet. It is from a series of monthly images of where phytoplankton are from August 1997 through March 2003, as seen by NASA and ORBIMAGE's Sea-viewing WIde Field-of-view Sensor (SeaWiFS) on the SeaStar satellite. On land, the dark greens show where there is abundant vegetation and the tan colors show relatively sparse plant cover. In the ocean, red, yellow, and green areas show higher levels of phytoplankton, and these are regions of the ocean that are the most productive over time, while blue and purple areas show where there is very little of the microscopic marine plants called phytoplankton.
Credit: NASA/ORBIMAGE/G. Feldman, NASA GSFC

A NASA-sponsored study shows that by using a new technique, scientists can determine what limits the growth of ocean algae, or phytoplankton, and how this affects Earth's climate.

Phytoplankton is a microscopic ocean plant and an important part of the ocean food chain. By knowing what limits its growth scientists can better understand how ecosystems respond to climate change.

The study focused on phytoplankton in the tropical Pacific Ocean. It is an area of the ocean that plays a particularly important role in regulating atmospheric carbon dioxide and the world's climate. This area of the ocean is the largest natural source of carbon dioxide to the atmosphere.

"We concluded that nitrogen is the primary element missing for algae growth and photosynthesis in the northern portion of the tropical Pacific, while it was iron that was most lacking everywhere else," said Michael J. Behrenfeld, an ocean plant ecologist from Oregon State University, Corvallis, Ore.

Scientists determined when phytoplankton is stressed from lack of iron; it appears greener, or healthier than they really are. Normally, greener plants are growing faster than less green plants. When iron is lacking, enhanced greenness does not mean phytoplankton are growing better. They are actually under stress and unhealthy. These conclusions solved the mystery why healthy looking phytoplankton are actually not so healthy.

"Because we didn't know about this effect of iron stress on the greenness of algae or phytoplankton before, we have always assumed that equally green waters were equally productive," Behrenfeld said. "We now know this is not the case, and that we have to treat areas lacking iron differently."

For the tropical Pacific, correction for this "iron-effect" decreases scientists' estimates of how much carbon ocean plants photosynthesize for the region by roughly two billion tons. This figure represents a tremendous amount of carbon that remains in the atmosphere that scientists previously thought were being removed.

The results about the false health of phytoplankton allow scientists using computer models to re-create the movement of carbon around the world much more accurately. Resource managers will become more knowledgeable about where carbon is going and the impact of recreational, industrial or commercial processes that use or produce carbon. Researchers better understand the Earth as an ecosystem, and can incorporate these findings in future modeling, analysis and predictions.

While satellite data from NASA's Sea-viewing Wide Field-of-view Sensor played an important part in the study, the real cornerstone of the discovery was ship-based measurements of fluorescence.

Fluorescence occurs when plants absorb sunlight and some of that energy is given back off again as red light. Scientists looked at approximately 140,000 measurements of fluorescence made from 1994 to 2006 along 36,040 miles of ship tracks. They found that phytoplankton give off much more fluorescence when the plants do not have sufficient iron. It is this signal they used to fingerprint what parts of the ocean are iron-stressed and what parts are nitrogen-stressed.

It is important that scientists understand how ocean plants behave because all plants play a critical role in maintaining a healthy planet. Plants annually take up billions of tons of carbon dioxide from the atmosphere through photosynthesis and use this carbon to create the food that nearly all other organisms on Earth depend on for life.

Nutrients that make ocean plants thrive, such as nitrogen and phosphate, mostly come from the deep parts of the ocean, when water is mixed by the wind. Iron also can come from dust blowing in the air.

Approximately half of the photosynthesis on Earth occurs in the oceans, and the remainder on land. Ocean and land plants share the same basic requirements for photosynthesis and growth. These requirements include water, light and nutrients. When these three are abundant, plants are abundant. When any one of them is missing, plants suffer.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "NASA Study Solves Ocean Plant Mystery." ScienceDaily. ScienceDaily, 3 September 2006. <www.sciencedaily.com/releases/2006/09/060901163044.htm>.
NASA/Goddard Space Flight Center. (2006, September 3). NASA Study Solves Ocean Plant Mystery. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2006/09/060901163044.htm
NASA/Goddard Space Flight Center. "NASA Study Solves Ocean Plant Mystery." ScienceDaily. www.sciencedaily.com/releases/2006/09/060901163044.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
The New York Times Backs Pot Legalization

The New York Times Backs Pot Legalization

Newsy (July 27, 2014) The New York Times has officially endorsed the legalization of marijuana, but why now, and to what end? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins