Featured Research

from universities, journals, and other organizations

Tabletop Experiment Yields Bubbly Surprise

Date:
October 6, 2006
Source:
University of Chicago
Summary:
University of Chicago physicists have discovered a new class of behavior in air bubbles rising from an underwater nozzle. In this surprising behavior, the bubbles tear apart in sharp jerks instead of pinching off at a point, the research team will report in the Oct. 6 issue of the journal Physical Review Letters.

Asymmetrical pinch-off of a burst of air from a slot-shaped nozzle. The top series shows a broad neck with a scalloped profile that results from slower bursts. The neck becomes more ribbon-like from faster bursts in the middle series. The ribbon thins until a hole forms in the center of the neck. Faster bursts also can produce off-center tearing, as shown in the bottom series.
Credit: Image s courtesy of Nathan Keim, University of Chicago

University of Chicago physicists have discovered a new class of behavior in air bubbles rising from an underwater nozzle. In this surprising behavior, the bubbles tear apart in sharp jerks instead of pinching off at a point, the research team will report in the Oct. 6 issue of the journal Physical Review Letters.

The research is helping scientists understand the mathematical explosions they encounter in the equations that govern the physics of fluids. "These are the equations of our lives," said Wendy Zhang, Assistant Professor in Physics at the University of Chicago. They govern everything from the bubbles of carbonated beverages to the venting of gas from deep oceanic fissures. They even apply to such large-scale processes such as exploding stars.

"One of the things that's nice about this field of research is that it's around you all the time," said Sidney Nagel, the Stein-Freiler Distinguished Service Professor in Physics at the University of Chicago. "It's on your tabletop and you've seen it who knows how many times. But by studying this so incredibly carefully, you get insights about things that happen on the celestial scale."

Chicago graduate student Nathan Keim and his co-authors-Zhang, Nagel, and Peder Moller, now a Ph.D. student at Ecole Normale Supιrieure-documented their discovery using high-speed digital photography. Keim's experiment built on previous work that Zhang, Nagel and others published in Science in 2003. Until then, scientists believed that all fluids broke apart in much the same way. They believed that the cross-section of the pinching neck of any drop or bubble would become circular until it broke, regardless of its initial conditions.

Normally when physicists work a problem, they want to know the initial conditions involved. "That determines the outcome of what happens," Keim said. But in all of the Chicago group's previous experiments on fluid breakup, "the initial conditions didn't matter. The system forgot them," Keim said.

The 2003 Science article described something different in experiments on water drops breaking up in a highly viscous oil. The article showed how the shape of the shrinking neck in a long, thin thread the drops formed depended on the initial shape of the nozzle. Drops from big nozzles detached differently than drops from small nozzles.

What Keim saw in the images from the latest experiment, taken at 130,000 frames per second, looked more like thin sheets of air tearing. "It would be almost like plastic or paper, something that you can tear. When you pulled it apart, it wouldn't snap all at once. It would tear across its breadth," Keim said.

The tearing apparently occurs when a small imperfection on the nozzle imprints itself on the shape of the bubbles, Zhang said. In their other experiments, "that wasn't an issue at all because the bubble managed to just straighten itself out. The problem with this one is that it doesn't straighten itself out," she said.

The tilt of the nozzle also contributes to the phenomenon. The physicists observed that even a tilt of only a tenth of a degree affected the shape of the air. "We had no idea that air bubbles were sensitive to such slight tilt," Keim said. "If you were hanging a picture, 0.1 degrees off would be a great job."

Keim and his co-authors related the bubble phenomenon to a 2004 report in the Astrophysical Journal by another team of University of Chicago scientists proposing that detonations in exploding stars my arise asymmetrically. A singularity-the failure of equations that describe the behavior of fluid motion-connects the physics of stars exploding in deep space with breaking bubbles in a water tank on Earth.

In an exploding star, "you have a singularity that is off-center, that has asymmetry," Keim said. "It happens in a place where you have denser material on one side and lighter material on the other. And so this singularity has some direction to it, some asymmetry, much in the way that ours does."

Nagel said a key to the project was having Keim, an experimentalist, working daily with Zhang, a theorist, in developing the research in ways that neither could do alone. Said Keim, "It's been great having Wendy often just asking the right question at the right time, prompting me to do an experiment that otherwise I wouldn't have thought was interesting."

In their collaborations, the Chicago physicists aim to get gain a better understanding of the equations that govern fluids on Earth, gases in the heavens, and perhaps even the motion of protons and neutrons inside an atom, Nagel said.

"They're ill-behaved, and yet it's theses kinds of equations that govern the texture and form of our lives," he said.


Story Source:

The above story is based on materials provided by University of Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University of Chicago. "Tabletop Experiment Yields Bubbly Surprise." ScienceDaily. ScienceDaily, 6 October 2006. <www.sciencedaily.com/releases/2006/10/061005221126.htm>.
University of Chicago. (2006, October 6). Tabletop Experiment Yields Bubbly Surprise. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2006/10/061005221126.htm
University of Chicago. "Tabletop Experiment Yields Bubbly Surprise." ScienceDaily. www.sciencedaily.com/releases/2006/10/061005221126.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) — The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins