Featured Research

from universities, journals, and other organizations

Have Traits, Will Travel: Some Butterflies Travel Farther, Reproduce Faster

Date:
October 17, 2006
Source:
American Physiological Society
Summary:
Researchers have uncovered physiological differences among female Glanville fritillary butterflies that allows some to move away from their birth place and establish new colonies. These venturesome butterflies are stronger fliers and reproduce more quickly compared to their less mobile female relatives. The study, to be presented at Comparative Physiology 2006, is a window to how genetic differences influence behavior and how the environment influences genetic change.

The Glanville fritillary.
Credit: Photo Howard Fescemyer, Pennsylvania State University

Researchers have uncovered physiological differences among female Glanville fritillary butterflies that allows some to move away from their birth place and establish new colonies. These venturesome butterflies are stronger fliers and reproduce more quickly compared to their less mobile female relatives.

The study is a window to how genetic differences influence behavior and how the environment influences genetic change by favoring individuals with certain traits, said lead author Howard W. Fescemyer. The new study found significant physiological differences that may account for the more adventuresome behavior of certain of the females.

The work is important because human activity is disrupting many animal habitats, forcing more and more species to do what the fritillary has long done in its naturally fragmented environment. Scientists want to know how this fragmentation influences a species' evolution.

"We may be selecting for genes that enhance the dispersal or migratory capability of animals when we fragment the landscape," Fescemyer said. The animals best able to migrate are more likely to survive and reproduce. "What we learn could apply to any organism that has to move to find food," he added

Εland Islands are natural laboratory

The study, "Population history-dependent reproductive physiology in a butterfly metapopulation," will be presented on Oct. 10 at Comparative Physiology 2006: Integrating Diversity, Oct. 8-11, Virginia Beach, Virginia. Howard W. Fescemyer and James H. Marden of Pennsylvania State University, Ilkka Hanski of the University of Helsinki and A. Daniel Jones of Michigan State University carried out the study. Marden was the senior researcher.

The researchers studied the Glanville fritillary butterfly (Melitaea cinxia) on the Εland Islands of Finland, located between Finland and Sweden in the Baltic Sea. The research team was composed of a population biologist, molecular biologist, physiologist and chemist. The study built on the work of Hanski who has recorded changes in the butterfly population on the islands for years.

It's in the genes

The fritillary live in distinct patches -- rocky outcroppings containing plants that serve as food and provide a hospitable home for the butterfly larvae to spend the winter. There are about 4,000 such patches on the Εlands, with about 500 patches occupied in a given season, Hanski has found. Some of the patches are farther apart than most individual butterflies can migrate, Fescemyer said.

Each year, new populations begin in some patches while others go extinct because of parasites, disease and the disappearance of plants that serve as food and shelter. Populations established on an isolated patch may require a good flier to reach a new patch to start a new population.

Flight capability varies quite a lot among females, who carry the eggs and establish new populations. For those reasons, natural selection on flight and reproductive capability acts primarily on the females.

Travelers reproduce more quickly

This study examined whether there is a difference in physiology between the females in the newly established populations and females in the older populations. The researchers found out there are.

The study looked at seven patches which had not been colonized the year before and six old populations, Fescemyer said. Hanski's group collected larvae from the seven new patches and reared them on host plants in the laboratory, where they moved to the pupae stage.

Fescemyer recorded when the pupa emerged to become butterflies and periodically collected individual butterflies to determine the number of mature eggs they carried.

"The females from the new patches develop very quickly," Fescemyer said. They developed mature eggs sooner (three days after emerging from the pupa) which could enable them to mate and lay eggs sooner. Females from older populations took an additional day to mature their eggs.

What's in a day? A lot. The butterflies live between two and three weeks after emerging from the pupa, so they have to produce eggs quickly. In the fragile world of a butterfly, a day can make all the difference between reproducing and not.

The physiological difference

The researchers delved into what was behind these differences in egg production and development. They obtained blood samples from butterflies from old populations and new populations. Compared to females in the established patches, the females in these newly colonized patches had more

  • total protein
  • vitellogenin
  • juvenile hormone

Juvenile hormone appears to be a key. It plays an important role in regulating egg and larval development and also regulates reproduction, particularly egg maturation, in adults, Fescemyer said. Vitellogenin is the protein precursor to egg yolk, which the embryo uses for food. Total protein is the most important nutrient for egg maturation, he said.

Adds to previous study

Previous studies had found other physiological differences between these more robust butterflies and their status quo sisters and brothers. They found that individuals that established new populations mate sooner, lay more eggs and have a different form of an enzyme important to flying, phosphoglucose isomerase. They also found they have a higher metabolic rate.

Future research will try to further uncover more physiological and molecular differences that account for the differences in reproduction and in flight, Fescemyer said. The researchers also hope to see what part host plant nutrition plays in these differences.


Story Source:

The above story is based on materials provided by American Physiological Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physiological Society. "Have Traits, Will Travel: Some Butterflies Travel Farther, Reproduce Faster." ScienceDaily. ScienceDaily, 17 October 2006. <www.sciencedaily.com/releases/2006/10/061012185042.htm>.
American Physiological Society. (2006, October 17). Have Traits, Will Travel: Some Butterflies Travel Farther, Reproduce Faster. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2006/10/061012185042.htm
American Physiological Society. "Have Traits, Will Travel: Some Butterflies Travel Farther, Reproduce Faster." ScienceDaily. www.sciencedaily.com/releases/2006/10/061012185042.htm (accessed April 19, 2014).

Share This



More Plants & Animals News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) — Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) — Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) — A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) — Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins