Featured Research

from universities, journals, and other organizations

Tarantula Venom And Chili Peppers Target Same Pain Sensor

Date:
November 9, 2006
Source:
University of California - San Francisco
Summary:
Venom from a West Indian tarantula has been shown to cause pain by exciting the same nerve cells in mice that sense high temperatures and the hot, spicy ingredient in chili peppers, UCSF scientists have discovered.

Trinidad chevron tarantula.
Credit: Image courtesy of University of California - San Francisco

Venom from a West Indian tarantula has been shown to cause pain by exciting the same nerve cells in mice that sense high temperatures and the hot, spicy ingredient in chili peppers, UCSF scientists have discovered.

The findings demonstrate that some plants and animals have evolved the same molecular strategy to deter predators -- triggering pain by activating a specific receptor on sensory nerves. The research provides new tools to understand how these pain- and heat-sensing neurons work, and to help develop drugs that ease persistent pain, the scientists report. Their finding, based on studies of mice cells in culture and live mice, is published in the November 9 issue of the journal Nature. The senior author is David Julius, professor and chair of physiology at UCSF.

The tarantula venom targets the heat sensor on nerve cells known as the capsaicin receptor, first cloned in 1997 in the Julius laboratory. In the last 10 years, Julius and his colleagues have demonstrated that this and related receptors trigger nerves to fire pain signals when exposed to Death Valley-like heat or the fiery properties of peppery food, mustard oil and other compounds. Human pain-sensing neurons also have these receptors on their surface, and some pain treatments have been developed that target them.

The capsaicin receptor acts as a channel on the nerve surface. When certain compounds bind to it, the receptor channel opens, allowing a stream of charged sodium and calcium molecules to rush into the nerve cell. This generates an electrical signal that travels to the brain to produce pain.

The researchers examined venoms from 22 spider and scorpion species whose bites are known to cause pain. Venom from the tarantula Psalmopoeus cambridgei activated the capsaicin receptor, also called TRPV1, and the researchers identified three protein subunits or peptides in the venom that targeted the receptor to cause pain. They also showed that venom from a second spider activated TRPV1, but they did not pinpoint which peptides were responsible.

The fact that a second spider venom triggered a capsaicin receptor suggests that a variety of spider species may have evolved the ability to use such toxins to target heat- and pain-sensing neuron receptors, the scientists conclude.

"It is fascinating that plants and animals have evolved the same anti-predatory mechanism to generate noxious sensations," Julius said. "These toxins are incredibly useful for understanding how ion channels of the nervous system work. They give us clues as to how specific activators or blockers on these channels can be designed to treat persistent pain -- from arthritis, bladder infections, or other diseases."

The researchers determined the venom peptides' effect in neuron cell cultures, measuring the tell-tale rush of calcium ions when the venom peptides contacted the TRPV1 capsaicin receptor. They also showed that synthetic versions of the venom peptides activated the receptor. In studies with mice, they found that normal animals flinched when their paws were exposed to the peptides, which they call vanillotoxins. Mice genetically engineered to lack capsaicin receptors did not respond.

Lead author of the Nature paper is Jan Siemens, PhD, postdoctoral scientist in cellular and molecular pharmacology at UCSF. Co-authors are Sharleen Zhou and David King at UC Berkeley; Rebecca Piskorowski, Columbia University; Tetsuro Nikai, PhD, a postdoctoral fellow in anatomy and physiology, UCSF; Ellen Lumpkin, PhD, assistant professor of neuroscience at Baylor College of Medicine; and Allan Basbaum, PhD, professor and chair of anatomy, UCSF.

The research was supported, in part, by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Francisco. "Tarantula Venom And Chili Peppers Target Same Pain Sensor." ScienceDaily. ScienceDaily, 9 November 2006. <www.sciencedaily.com/releases/2006/11/061108154516.htm>.
University of California - San Francisco. (2006, November 9). Tarantula Venom And Chili Peppers Target Same Pain Sensor. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2006/11/061108154516.htm
University of California - San Francisco. "Tarantula Venom And Chili Peppers Target Same Pain Sensor." ScienceDaily. www.sciencedaily.com/releases/2006/11/061108154516.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins