Featured Research

from universities, journals, and other organizations

Scientists Design Simple Dipstick Test For Cocaine, Other Drugs

Date:
November 20, 2006
Source:
University of Illinois at Urbana-Champaign
Summary:
Researchers at the University of Illinois at Urbana-Champaign have developed a simple "dipstick" test for detecting cocaine and other drugs in saliva, urine or blood serum. The test is based upon DNA-gold nanoparticle technology, and can be packaged in user-friendly kits similar to those used for home pregnancy tests.

Yi Lu, a chemistry professor at the U. of I., and a researcher at the Beckman Institute for Advanced Science and Technology, led the research group that developed a simple "dipstick" test for detecting cocaine and other drugs in saliva, urine or blood serum.
Credit: Image courtesy of University of Illinois at Urbana-Champaign

Researchers at the University of Illinois at Urbana-Champaign have developed a simple "dipstick" test for detecting cocaine and other drugs in saliva, urine or blood serum. The test is based upon DNA-gold nanoparticle technology, and can be packaged in user-friendly kits similar to those used for home pregnancy tests.

Related Articles


"Building upon our earlier work with lead (Pb) sensors, we constructed colorimetric sensors that are based on the lateral flow separation of aptamer-linked nanostructures," said Yi Lu, a chemistry professor at the U. of I., and a researcher at the Beckman Institute for Advanced Science and Technology.

"The new sensors offer a quick and convenient test that can be utilized by first responders or emergency room staff to quickly screen individuals for a variety of drugs and other chemicals." Lu said.

Aptamers are single-stranded nucleic acids that can bind to specific molecules in three-dimensions. For each molecular target, such as cocaine, a corresponding aptamer can be selected from a large DNA library.

By using lateral flow devices as platforms to separate aptamer-linked nanoparticle aggregates, Lu, postdoctoral researcher Juewen Liu and graduate student Debapriya Mazumdar created highly sensitive and selective colorimetric sensors that mimic litmus paper tests. The researchers describe their work in a paper accepted for publication in the journal Angewandte Chemie International Edition, and posted on its Web site.

"Our lateral flow devices take advantage of the difference in size between dispersed and aggregated gold nanostructures," Lu said. "This provides critical control for the performance of the devices."

The lateral flow device consists of four overlapping pads -- wicking, conjugation, membrane and absorption. The appropriate aptamer-linked nanoparticle aggregates are placed on the conjugation pad, streptavidin is applied as a thin line to the membrane pad, and the device is then dried.

When dipped into a solution, or swabbed with a sample, the wicking pad carries the fluid to the nanoparticle aggregates on the conjugation pad. The rehydrated aggregates then migrate to the edge of the membrane, which they cannot penetrate because of their large size.

The aptamers quickly bind to any targeted molecules that are present, freeing some of the gold nanoparticles. The red-colored nanoparticles then migrate along the membrane, where they are captured by the streptavidin and form a red line. The intensity of the line is an indicator of how much of the targeted molecule was in the sample solution.

So far, the researchers have successfully demonstrated their dipstick technology on both adenosine (a nucleotide consisting of adenine and ribose) and cocaine, in human blood serum.

"Our results show that the aptamer-based dipstick is compatible with biological samples, making applications in medicinal diagnostics possible," Lu said.

The work was funded by the U. S. Department of Energy, the National Science Foundation, and the U.S. Army Research Laboratory.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Scientists Design Simple Dipstick Test For Cocaine, Other Drugs." ScienceDaily. ScienceDaily, 20 November 2006. <www.sciencedaily.com/releases/2006/11/061113175828.htm>.
University of Illinois at Urbana-Champaign. (2006, November 20). Scientists Design Simple Dipstick Test For Cocaine, Other Drugs. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2006/11/061113175828.htm
University of Illinois at Urbana-Champaign. "Scientists Design Simple Dipstick Test For Cocaine, Other Drugs." ScienceDaily. www.sciencedaily.com/releases/2006/11/061113175828.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins