Featured Research

from universities, journals, and other organizations

Controlling Electrical Properties Of Organic Semiconductor Materials

Date:
February 3, 2007
Source:
University of Rochester
Summary:
University of Rochester physicists have learned why Pentacene, the leading candidate for developing organic semiconductors, conducts electricity in inconsistent ways rather than with predictable electrical properties.

Here the surface is growing in a layer-by-layer fashion as opposed to mound growth. The second monolayer does not start forming until the first one is almost complete. The dark background is the substrate.
Credit: Image courtesy of University of Rochester

University of Rochester physicists have learned why Pentacene, the leading candidate for developing organic semiconductors, conducts electricity in inconsistent ways rather than with predictable electrical properties. Specifically, Professors Yongli Gao and Yonathan Shapir, with Gao's PhD student Serkan Zorba (now an Assistant Professor at Whittier College), discovered that Pentacene is the first known substance with two basic growth mechanisms that combine to form thin films with unique fractal patterns. These fractal growths are why other researchers have found inconsistent electrical properties in layers of Pentacene.

Organic semiconductor materials have vast potential to transform electronic devices and save energy. For example, experts predict that organics will be used in the near future to create inexpensive, lightweight, flexible organic light-emitting diodes; organic thin film transistors; and organic photovoltaic cells that can power a wide variety of devices.

The processing of organic semiconductors can be done at low temperatures, whereas inorganic semiconductors require high temperatures. However, to create organic semiconductors inexpensively on large areas, fabricators must use evaporative deposition, a common method of placing a thin film on a substrate or on previously deposited layers. Another common method, called sputtering, takes a lot longer.

Pentacene is a compound of carbon and hydrogen (C22H14) with a crystal structure. Most organic materials considered as potential semiconductors are not crystals; rather, they are amorphous. Electricity can move more easily through crystalline materials because atoms are arranged in regular patterns.

As was the case with inorganic semiconductor devices in the twentieth century, the most important factor in developing twenty-first century organic semiconductors is being able to control their electrical properties in thin films. The process of controlling the electrical resistance (or its inverse, which is called mobility) of electrons in a substrate of Pentacene depends on how the material is grown in the laboratory.

Because of Pentacene's importance to the future of the organic semiconductor industry, the University of Rochester team investigated the growth patterns of Pentacene substrates and thin films grown via evaporation. They used a device called an Atomic Force Microscope (AFM), which images surface layers at the level of observing single molecules. Then they created models of the process with numerical simulations and interpreted the results.

Much to their surprise, the researchers discovered that Pentacene has two basic growth mechanisms that together form films with unique fractal patterns.

Diffusion-Limited-Aggregation, or DLA, is one of the most famous fractal cluster structures. It occurs when particles diffuse toward and stick to a cluster of molecules on the surface of a substrate. Many substances exhibit DLA behaviors when used to grow a thin film surface layer. Due to random gaps introduced by the nature of the DLA structure, the fractal dimensions of a two-dimensional layer are 1.6; this means that, given a circle of radius r, the number of molecules inside the circle is proportional to the power of 1.6 rather than 2, which is the regular exponent for a circle.

Many substances grow thin film surface layers using a different mechanism, known as mounded growth, where material deposited grows in mounds, or tiny foot hills, on a substrate. This type of surface growth occurs due to the Schwoebel Effect, where a molecule that is deposited on the surface of a mound is prevented from going downward. As more material is deposited on the substrate, the mounds get higher, and as a result, the film is bumpy rather than smooth and uniform.

Pentacene simultaneously exhibits both Diffusion-Limited-Aggregation growth and mounded growth. The DLA occurs horizontally, while the mound growth occurs vertically.

As Professor Shapir says, "Not only has this never been seen before in any experiment, it has also never been predicted theoretically."

Professor Gao speculates that the manufacturing of the first monolayer of molecules is the key to making a uniform thin film. The random fractal structure in the evaporative deposition of the first layer causes surface gaps with large electrical resistance. The subsequent building of mounds on top of these fractal structures makes the resistance even worse.

The manufacturing of a smooth first monolayer of molecules can be done using Molecular Beam Epitaxy, but that technique is very expensive and can only be used to coat very small areas. Another technique to make a uniform first monolayer is called Self Assembly Monolayer, in which the substrate surface is dipped into a carefully prepared chemical mixture that includes Pentacene. A third technique involves shining linearly polarized light on the surface to organize molecules along straight lines during evaporative deposition. These and other ideas are currently being investigated by researchers worldwide.


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University of Rochester. "Controlling Electrical Properties Of Organic Semiconductor Materials." ScienceDaily. ScienceDaily, 3 February 2007. <www.sciencedaily.com/releases/2007/01/070131113419.htm>.
University of Rochester. (2007, February 3). Controlling Electrical Properties Of Organic Semiconductor Materials. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2007/01/070131113419.htm
University of Rochester. "Controlling Electrical Properties Of Organic Semiconductor Materials." ScienceDaily. www.sciencedaily.com/releases/2007/01/070131113419.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Next Stop America for France's TGV?

Next Stop America for France's TGV?

Reuters - Business Video Online (Apr. 24, 2014) General Electric keeps quiet on reports it's in talks to buy French turbine and train maker Alstom. Ivor Bennett reports on what could be an embarrassing rumour for the French government, with business-friendly reforms proving a hard sell. Video provided by Reuters
Powered by NewsLook.com
Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins