Featured Research

from universities, journals, and other organizations

Scientists Reverse Autism-like Symptoms In Genetic Mouse Model Of Rett Syndrome

Date:
February 9, 2007
Source:
Rett Syndrome Research Foundation
Summary:
The Rett Syndrome Research Foundation announces results of a landmark study reversing the symptoms of Rett Syndrome in a genetic mouse model. The findings, by Adrian Bird, Ph.D., of the University of Edinburgh and Chairman of the RSRF Scientific Advisory Board, appear online in Science Express on February 8, 2007. Rett Syndrome is a severe childhood neurological disease that is the most physically disabling of the autism spectrum disorders. The experiments were funded in part by the Rett Syndrome Research Foundation.

The Rett Syndrome Research Foundation (RSRF) announces results of a landmark study reversing the symptoms of Rett Syndrome (RTT) in a genetic mouse model. The findings, by Adrian Bird, Ph.D., of the University of Edinburgh and Chairman of the RSRF Scientific Advisory Board, appear online in Science Express on February 8, 2007. Rett Syndrome is a severe childhood neurological disease that is the most physically disabling of the autism spectrum disorders. The experiments were funded by the Rett Syndrome Research Foundation (RSRF), the Wellcome Trust and the Rett Syndrome U.K./Jeans for Genes.

Related Articles


Caused by mutations in the gene MECP2, RTT affects primarily girls, striking at random in early childhood and destroying speech, normal movement and functional hand use. Many children become wheelchair bound; those who walk display an abnormal, stiff-legged gait. Disordered breathing patterns and Parkinson-like tremors are common.

Restoration of fully functional MECP2 over a four week period eradicated tremors and normalized breathing, mobility and gait in mice that had previously been fully symptomatic and, in some cases, only days away from death.

"Like many other people, we expected that giving MeCP2 to mice that were already sick would not work," said Bird. "The idea that you could put back an essential component after the damage to the brain is done and recover an apparently normal mouse seemed farfetched, as nerve cells that developed in the absence of a key component were assumed to be irrevocably damaged. The results are gratifyingly clear, though, and must give hope to those who are affected by this distressing disorder."

Bird is Buchanan Professor of Genetics at University of Edinburgh and Director of the Wellcome Trust Centre for Cell Biology. MeCP2, first identified by Bird in 1990, is considered to be a protein that regulates the expression of other genes by turning them off at the appropriate time.

In 1999 Huda Zoghbi, M.D., Professor, Departments of Molecular and Human Genetics, Pediatrics, Neurology, and Neuroscience at Baylor College of Medicine discovered that RTT is caused by mutations in the MECP2 gene. Mutations in MECP2 are now being seen in some cases of childhood schizophrenia, classic autism and learning disabilities.

"The findings are extraordinary, and are of relevance not only to Rett Syndrome but to a much broader class of disorders, including autism and schizophrenia. The successful restoration of normal function demonstrated in the mouse models suggests that if we can develop therapies to address the loss of MECP2 we may be able to reverse neurological damage in children and adults with Rett, autism and related neuropsychiatric disorders," commented Zoghbi.

The reversal experiments were carried out in the Bird lab by research assistant Jacky Guy. Employing technology known as Cre-lox recombination, she created mouse models in which MECP2 was silenced by insertion of a Stop cassette into the gene, resulting in the neurological deficits seen in RTT. Silencing could be reversed at will by removing the Stop cassette, thereby reactivating the MECP2 gene. This was achieved by treating the mice with a drug that caused the enzyme Cre to enter the cell nucleus where it could splice out the cassette.

As well as losing overt behavioral defects, the mice also recovered a key electrophysiological function of the brain. This was determined by measuring LTP (long-term potentiation) which provides a quantifiable measurement of the ability of neurons to respond to stimulation. LTP has long been thought to reflect the cellular basis of learning and memory. Though LTP in RTT mice models was defective, it was restored to normal function by the reversal experiments.

"The reversal of neurological defects, reported in the remarkable article by Guy et al, is surprising because the cause of the symptoms occurred early in development and was expected to be permanent. Of particular note is the recovery of LTP, which is the best current physiological correlate of learning and memory. These findings are very encouraging for those searching for a treatment because they give hope that the symptoms could not only be halted from progressing, but the course of the disease itself may be able to be reversed," stated Fred Gage, Ph.D. of the Salk Institute of Biological Studies.

"Dr. Bird's astonishing results usher in a new era for Rett Syndrome and other autism spectrum disorders. The reversal experiments provide justification for aggressive exploration of next steps on all fronts, from drug discovery to gene correction. The Rett Syndrome Research Foundation will be focused on a comprehensive effort to identify and speed treatments to the children and adults in dire need of them," commented Monica Coenraads, co-founder and Director of Research for RSRF and mother of a young daughter with the disorder.

The reversal experiments were funded by the Wellcome Trust, the Rett Syndrome Research Foundation (RSRF) and the Rett Syndrome U.K./Jeans for Genes.


Story Source:

The above story is based on materials provided by Rett Syndrome Research Foundation. Note: Materials may be edited for content and length.


Cite This Page:

Rett Syndrome Research Foundation. "Scientists Reverse Autism-like Symptoms In Genetic Mouse Model Of Rett Syndrome." ScienceDaily. ScienceDaily, 9 February 2007. <www.sciencedaily.com/releases/2007/02/070208230122.htm>.
Rett Syndrome Research Foundation. (2007, February 9). Scientists Reverse Autism-like Symptoms In Genetic Mouse Model Of Rett Syndrome. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2007/02/070208230122.htm
Rett Syndrome Research Foundation. "Scientists Reverse Autism-like Symptoms In Genetic Mouse Model Of Rett Syndrome." ScienceDaily. www.sciencedaily.com/releases/2007/02/070208230122.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins