Featured Research

from universities, journals, and other organizations

Changing Gold: Precious Metal Not As Noble Or Stable As Previously Thought

Date:
February 13, 2007
Source:
European Synchrotron Radiation Facility
Summary:
Gold is not as noble and stable as it has been previously thought. This is the conclusion of an international team of researchers from Germany, France and Sweden who came to the ESRF to study the structure of this material at high pressure. They present their results in Physical Review Letters.

Gold bars.
Credit: Photo : Copyright Sveriges Riksbank

Gold is not as noble and stable as it has been previously thought. This is the conclusion of an international team of researchers from Germany, France and Sweden who came to the ESRF to study the structure of this material at high pressure. They present their results in Physical Review Letters.

Related Articles


The uniqueness of gold and its appreciation as a valuable throughout history is closely related to its exceptional stability to chemical reactions and extreme pressures and temperatures. Gold was considered as a synonym of immovability and constancy (remember the wedding rings!). Indeed, at ambient pressure gold has been known to remain stable in a cubic crystalline phase to at least 180 GPa (one million eight hundred thousand atmospheres).

Scientists from the Bayerisches Geoinstitut and the University of Heidelberg (Germany), together with researchers from Sweden and the ESRF (France) have detected for the first time a phase transformation in gold using the synchrotron. The experiments have shown that at pressures above ~240 GPa gold adopts an hexagonal-close packed structure.

In order to carry out their experiments, scientists usedthe beamlines BM01, ID27 and ID30at the ESRF combined with a new instrument at the Bayerisches Geoinstitut. The sample was placed inside a diamond anvil cell, which was then electrically heated externally. This allowed them to study gold at the pressures of the Earth’s core, that is, at a depth of 5500 km from the surface.

Advances in high-pressure techniques require standards which are applicable at a multimegabar pressure range. Large pressure and temperature stability of the cubic gold phase and its high isothermal compressibility make gold an ideal material to be used as a pressure marker at high pressure- high temperature experiments at pressures above 100 GPa. The pressure-induced phase transition found in gold at pressure above 240 GPa places a “natural” limit on the application of cubic gold as a standard.

These results confirm the theoretical predictions about the phase changes in gold. “These new experimental and theoretical results remind us that there is no “absolute” unchangeable material, and the noblest of all metals, gold, is not an exception from this rule”, explains Leonid Dubrovinsky, main researcher.

Reference: L. Dubrovinsky, N. Dubrovinskaia, W. A. Crichton, A. S. Mikhaylushkin, S. I. Simak, I. A. Abrikosov, J. S. de Almeida, R. Ahuja, W. Luo, and B. Johansson. Noblest of All Metals Is Structurally Unstable at High Pressure, Phys. Rev. Lett. 98, 045503 (2007).


Story Source:

The above story is based on materials provided by European Synchrotron Radiation Facility. Note: Materials may be edited for content and length.


Cite This Page:

European Synchrotron Radiation Facility. "Changing Gold: Precious Metal Not As Noble Or Stable As Previously Thought." ScienceDaily. ScienceDaily, 13 February 2007. <www.sciencedaily.com/releases/2007/02/070212183756.htm>.
European Synchrotron Radiation Facility. (2007, February 13). Changing Gold: Precious Metal Not As Noble Or Stable As Previously Thought. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/2007/02/070212183756.htm
European Synchrotron Radiation Facility. "Changing Gold: Precious Metal Not As Noble Or Stable As Previously Thought." ScienceDaily. www.sciencedaily.com/releases/2007/02/070212183756.htm (accessed April 18, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

At Least 15 Injured in a California Natural Gas Pipeline Explosion

At Least 15 Injured in a California Natural Gas Pipeline Explosion

Reuters - US Online Video (Apr. 18, 2015) At least 15 injred after natural gas transmission line ruptures in Fresno, California. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
NASA Electric Rover Goes for a Spin

NASA Electric Rover Goes for a Spin

Reuters - Innovations Video Online (Apr. 17, 2015) NASA&apos;s prototype electric buggy could influence future space rovers and conventional cars. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Create Self-Powering Camera

Scientists Create Self-Powering Camera

Reuters - Innovations Video Online (Apr. 17, 2015) American scientists build a self-powering camera that captures images without using an external power source, allowing it to operate indefinitely in a well-lit environment. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
The State Of Virtual Reality

The State Of Virtual Reality

Newsy (Apr. 17, 2015) Virtual Reality is still a young industry. What’s on offer and what should we expect from our immersive new future? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins