Featured Research

from universities, journals, and other organizations

New Protein Super-family Discovered With Critical Functions For Animal Life

Date:
February 14, 2007
Source:
Public Library of Science
Summary:
Biologists have discovered a new super-family of developmental proteins that are critical for cell growth and differentiation and whose further study is expected to benefit research on cancer and the nerve-cell repair. The protein super-family, which existed before the emergence of animals about 850 million years ago, is of major importance for understanding how life evolved in primordial times. The discovery will be described in the February 14, 2007 issue of the journal PLoS ONE.

The DANGER family member, DANGER1A, is expressed in a variety of cells (brown color) that lose their ability to divide, including nerves, muscle, and neuroendocrine cells. DANGER1A is first expressed in the developing mouse (embryonic stage 13.5) in the spinal cord (arrows), with increasing expression in postnatal day 0 mice, and is maximal in the adult mouse brain. Of interest is the high expression of DANGER1A in the insulin-producing islet cells of the pancreas.
Credit: D. Neil Watkins, Sidney Kimmel Cancer Institute at Johns Hopkins University

Biologists have discovered a new super-family of developmental proteins that are critical for cell growth and differentiation and whose further study is expected to benefit research on cancer and the nerve-cell repair. The protein super-family, which existed before the emergence of animals about 850 million years ago, is of major importance for understanding how life evolved in primordial times. The discovery will be described in the 14 February 2007 issue of the journal PLoS ONE.

Related Articles


"This super-family is highly divergent, even in animals with an ancient lineage such as the sea anemone. This super-family also evolves rapidly, so its proteins may provide a model system for investigating how rapidly mutating genes contribute to, and are likely necessary for, the diversity and adaptability of animal life," explains Penn State Assistant Professor Randen Patterson, the senior author of the study. The new protein superfamily is named "DANGER," an acronym for "Differentiation and Neuronal Growth Evolve Rapidly."

The discovery was led by Patterson and Damian van Rossum, a postdoctoral scholar at Penn State in University Park, Pennsylvania, and collaborators at Johns Hopkins University in Baltimore, Maryland. "Most DANGER proteins have not been researched, but from what little we do know these proteins, they are critical for cell growth and differentiation," van Rossum says.

Because so many genomes for diverse organisms have been sequenced and annotated, the discovery of a new and deeply rooted protein family is quite rare. The relationship of the six family members comprising the DANGER super-family escaped detection due to the high rates of mutations between family members, although a few family members had been detected previously and had been shown to control the differentiation of cells into organs in worms, fish, and mice. Deletion of these their DANGER genes led to gross structural changes and prenatal death.

These findings also have clinical relevance, according to the researchers. "Many DANGER proteins are surrounded by transposable elements, which are pieces of DNA around genes that help the genes migrate back and forth throughout the genome," Patterson says. Because of this feature, DANGER genes can move throughout the genome, which could have positive or negative health consequences. "One member of the gene family resides in the genome at an area responsible for a human disease, the Smith-Magenis syndrome, which results in severe physical and mental retardation," Patterson explains. "DANGER genes also contain transposable elements that may participate in the genetic disturbances associated with chronic myeleoid leukemia."

One member of the super-family has been identified as playing a role in the development of the nervous system. "In cell culture and spinal cord neurons, the protein coded for by this gene stimulates lengthening and branching of neurons," Patterson says. Because many other DANGER proteins also are expressed in neurons, discovering their functions may be a key to deciphering the complexity of neuronal growth and development.

In addition to Patterson and van Rossum, investigators in this study include N. Nikolaidis and D. Chalkia at Penn State and D. N. Watkins, R. K. Barrow, and S. H. Snyder at Johns Hopkins. The research was supported by grants from the National Institutes of Health and the Searle Foundation.

Citation: Nikolaidis N, Chalkia D, Watkins DN, Barrow RK, Snyder S, et al (2007) Ancient Origin of the New Developmental Superfamily DANGER. PLoS ONE 2(2): e204. doi:10.1371/journal.pone.0000204 (http://dx.doi.org/10.1371/journal.pone.0000204)


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "New Protein Super-family Discovered With Critical Functions For Animal Life." ScienceDaily. ScienceDaily, 14 February 2007. <www.sciencedaily.com/releases/2007/02/070214084033.htm>.
Public Library of Science. (2007, February 14). New Protein Super-family Discovered With Critical Functions For Animal Life. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2007/02/070214084033.htm
Public Library of Science. "New Protein Super-family Discovered With Critical Functions For Animal Life." ScienceDaily. www.sciencedaily.com/releases/2007/02/070214084033.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins