Featured Research

from universities, journals, and other organizations

How Eating Less Might Make You Live Longer

Date:
March 6, 2007
Source:
Public Library of Science
Summary:
Caloric restriction in non-obese people translates into less oxidative damage in muscle cells, according to a new study by Anthony Civitarese, Eric Ravussin and colleagues (Pennington Biomedical Research Center). As oxidative damage has been linked to aging, this could explain how limiting calorie intake without malnutrition extends life span.

Civitarese and colleagues found that indeed fewer calories can improve whole body metabolism in conjunction with an increase in SIRT1 gene expression in skeletal muscle. These results raise the possibility that SIRT1 may contribute to more efficient metabolism, less oxidative stress, and increase longevity in humans as it does in lower organism.
Credit: Image courtesy of Public Library of Science

Caloric Restriction in non-obese people translates into less oxidative damage in muscle cells, according to a new study by Anthony Civitarese, Eric Ravussin, and colleagues (Pennington Biomedical Research Center). As oxidative damage has been linked to aging, this could explain how limiting calorie intake without malnutrition extends life span.

A calorie-restricted diet provides all the nutrients necessary for a healthy life but minimizes the energy (calories) supplied in the diet. This type of diet increases the life span of mice and delays the onset of age-related chronic diseases such as cancers, heart disease, and stroke in rodents. There are also hints that people who eat a calorie-restricted diet might live longer than those who overeat. In addition, calorie-restricted diets beneficially affect several biomarkers of aging, including decreased insulin sensitivity (a precursor to diabetes). But how might caloric restriction slow aging? A major factor in the age-related decline of bodily functions is the accumulation of "oxidative damage" in the body's proteins, fats, and DNA. Oxidants--in particular, chemicals called "free radicals"--are produced when food is converted to energy by cellular structures called mitochondria. One theory for h ow caloric restriction slows aging is that it lowers free-radical production by inducing the formation of efficient mitochondria.

Civitarese and colleagues enrolled 36 healthy overweight but non-obese young people into their study. A third of them received 100% of their energy requirements in their diet; the caloric restriction (CR) group had their calorie intake reduced by 25%; and the caloric restriction plus exercise (CREX) group had their calorie intake reduced by 12.5% and their energy expenditure increased by 12.5%. The researchers found that a 25% caloric deficit for 6 months, achieved by diet alone or by diet plus exercise, decreased 24hr whole body energy expenditure (i.e. overall calories burned), which suggests improved mitochondrial function. Their analysis of genes involved in mitochondria formation indicated that CR and CREX both increased the number of mitochondria in muscle. Both interventions also reduced the amount of DNA damage--a marker of oxidative stress--in the participants' muscles.

The researchers also examined gene expression in the study participants. In yeast, worms, and flies the activation of the Sir2 gene increases life span and regulates cellular metabolism. An important question is whether caloric restriction can regulate SIRT1 (the mammalian equivalent of Sir2) in humans. Civitarese and colleagues found that indeed fewer calories can improve whole body metabolism in conjunction with an increase in SIRT1 gene expression in skeletal muscle. These results raise the possibility that SIRT1 may contribute to more efficient metabolism, less oxidative stress, and increase longevity in humans as it does in lower organism.

The results suggest that even short-term caloric restriction can produce beneficial physiological changes leading to improved health. Whether caloric restriction and the associated health benefits can be sustained over longer term remains to be established in humans.

Citation: Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, et al. (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4(3): e76. (http://dx.doi.org/10.1371/journal.pmed.0040076)


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "How Eating Less Might Make You Live Longer." ScienceDaily. ScienceDaily, 6 March 2007. <www.sciencedaily.com/releases/2007/03/070305202936.htm>.
Public Library of Science. (2007, March 6). How Eating Less Might Make You Live Longer. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2007/03/070305202936.htm
Public Library of Science. "How Eating Less Might Make You Live Longer." ScienceDaily. www.sciencedaily.com/releases/2007/03/070305202936.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins