Featured Research

from universities, journals, and other organizations

Volcanic Plumbing Dictates Development Of Deep-sea Hydrothermal Vents

Date:
March 22, 2007
Source:
University of Oregon
Summary:
After years of results that repeatedly dogged him, University of Oregon geologist Douglas R. Toomey decided to follow the trail of data surfacing from the Pacific Ocean. In doing so, he and his collaborators may have altered long-held assumptions involving plate tectonics on the ocean floor.

Vestimentiferan tubeworms Riftia pachyptila occur near deep sea hydrothermal vents found along the East Pacific Rise. Sites of intense hydrothermal activity, and their related ecosystems, rely upon upwelling magma from Earth's mantle for their energy.
Credit: Dr. James Childress, UCSB

After years of results that repeatedly dogged him, University of Oregon geologist Douglas R. Toomey decided to follow the trail of data surfacing from the Pacific Ocean. In doing so, he and his collaborators may have altered long-held assumptions involving plate tectonics on the ocean floor.

Reporting in the March 22 issue of Nature, Toomey and co-authors from four other institutions propose that, one, the flow in the Earth's mantle is rotated beneath the East Pacific Rise, causing the plate boundary to change orientation with time. Secondly, they argue that deep-sea hydrothermal vents frequently form above volcanoes where upwelling of the mantle and spreading of the plates are aligned.

Surprisingly, Toomey added, the amount of magma produced by volcanoes under both aligned and non-aligned mantle-plate regions is relatively equal, but that magma only in aligned sections regularly breaches the crust. When the volcanic plumbing between the mantle and crust is not aligned, magma cools and volatiles are lost as the magma moves laterally, he said. Most of the magma then remains under the sea floor.

For years, geologic theory has predicted that magma production alone is vital to fuel hydrothermal vents, or the "hot smokers" where microorganisms such as the Archaea thrive. These new findings indicate that the volcanic-plumbing system better explains why one volcano hosts hot smokers, while another does not, Toomey said.

"We've had the data since 1997 and the germ of our results for the last six years," said Toomey, whose funding came through the Ridge 2000 initiative of the National Science Foundation. "We've really solidified our findings in the last 18 months. The mantle is moving or flowing in one direction, and the plate boundary is trying to catch up. We've talked for years about passive flow models for ocean ridges - the mantle upwells as a passive response to plate motion. Now we see the mantle flow is not entirely passive or controlled by the overlapping plates. The mantle flow provides a driving force for plate motion. This discovery is remarkably surprising."

The area studied is along the "fast-spreading" East Pacific Rise between the Siqueiros and Clipperton transforms, at 9 degrees north latitude. It contains numerous axis discontinuities, including two large-offset transform faults, large long- and short-lived overlapping spreading systems and smaller morphological, petrologic and seismic rock boundaries.

The researchers performed a first-of-its-kind imaging of the upper-most mantle. They dropped numerous ocean-bottom measuring devices to capture seismic data that are used to make tomographic images - similar to those obtained in medicine with computerized axial tomography, or CAT scans - of the patterns of magma delivery to the crust, in this case the ocean floor. This allowed researchers to explore both the isotropic and anisotropic structure of material in the mantle. "Our results allow conclusions to be drawn about the driving and controlling processes for segmentation of fast-spreading ridges," the researchers wrote in their study.

"A big question in the ridge community has been: What is the connection between mantle processes that are generating magma and the overlying sea-floor hydrothermal systems?" Toomey said. "This study at 9 North gives us a unique picture of mantle-crust segmentation at a level never before seen."

Hydrothermal vents occur most often where plate spreading and mantle upwelling are aligned. More heat from volcanic activity reaches the sea floor, and both sides of the ridge are flat and wide, with an abundance of lava being erupted. The non-aligned zones, where magma upwelling is not directly beneath the rise, are deeper, with less frequent eruptions on the surface, and they lack hot smokers.

However, Toomey said, the deeper ridge is magmatically active, actually producing the same or more magma but not as surface eruptions. Instead, the magma is cooled at depth or intruded. "At both places, the plates are spreading apart at the same rate," Toomey said. "The deeper areas look older on the surface, like they are being stretched. Yet these areas are still accumulating magma beneath the sea floor."

The data his team compiled and analyzed, Toomey said, show that the segmentation of the ridge system is related to the skew of the mantle upwelling. "The mantle is moving differently from the plates, so it is having a strong influence on the reorganization of the plate boundary.

"When people have looked at these systems in the past, and they saw an area that is volcanically active and hydrothermally active, they assumed the magma supply is high and a lot is coming to the surface," he said. "What our study shows is that the plumbing system, rather than the amount of available magma, is an important factor that controls eruptions. In other words, how magma evolves as it moves through the plumbing system controls whether or not it surfaces."

The four co-authors of the study with Toomey were: David Jousselin of Nancy-Université in France; Robert A. Dunn of the University of Hawaii School of Ocean and Earth Science and Technology; William S.D. Wilcock of the School of Oceanography at the University of Washington; and R.S. Detrick of the Woods Hole Oceanographic Institution in Massachusetts. All of the authors participated in the experimental design, collection of data and various analyses.


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Cite This Page:

University of Oregon. "Volcanic Plumbing Dictates Development Of Deep-sea Hydrothermal Vents." ScienceDaily. ScienceDaily, 22 March 2007. <www.sciencedaily.com/releases/2007/03/070321181929.htm>.
University of Oregon. (2007, March 22). Volcanic Plumbing Dictates Development Of Deep-sea Hydrothermal Vents. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2007/03/070321181929.htm
University of Oregon. "Volcanic Plumbing Dictates Development Of Deep-sea Hydrothermal Vents." ScienceDaily. www.sciencedaily.com/releases/2007/03/070321181929.htm (accessed September 16, 2014).

Share This



More Earth & Climate News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) — Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) — Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins