Featured Research

from universities, journals, and other organizations

Researchers Identify Critical Receptor In Liver Regeneration

Date:
March 30, 2007
Source:
University of California - San Diego
Summary:
In studies in mouse models, researchers have found that a cellular receptor involved in triggering cell death is also a necessary component of tissue repair and regeneration immediately following liver injury. This discovery could have implications for early intervention or therapy in liver disease such as cirrhosis or hepatitis.

A hepatic stellate cell activated by the p75 Neurotrophin Receptor promotes repair in the liver.
Credit: Image courtesy of University of California - San Diego

In studies in mouse models, researchers at the University of California, San Diego (UCSD) School of Medicine have found that a cellular receptor involved in triggering cell death is also a necessary component of tissue repair and regeneration immediately following liver injury. This discovery could have implications for early intervention or therapy in liver disease such as cirrhosis or hepatitis.

Related Articles


In a report to be published in the March 30 issue of the journal Science, Katerina Akassoglou, Ph.D. assistant professor in UCSD's Department of Pharmacology, and colleagues describe the mechanism by which cells associated with liver damage, called hepatic stellate cells (HSCs), are activated by a cell surface molecule called the p75 neurotrophin receptor (p75NTR) to promote repair in the liver.

"Many therapeutics for liver disease target HSCs in order to kill them, but our study in animal models found that their initial activity could actually be protective," said Akassoglou.

When chronic liver injury occurs, cells in the liver begin producing collagen and other proteins that lead to the formation of fibrous tissue and scarring. Akassoglou's team looked at the molecular-cellular interface to discover how tissues respond to deposition of the fibrous protein, fibrin. In studies of a mouse model with excessive fibrin deposition in the liver, the researchers found that p75NTR signaling promotes the initial activation of HSC, which stimulates the proliferation of new hepatic cells to replace those that have been damaged. The effects of p75NTR at late stages of HSC activation and liver disease remain to be determined.

"We were intrigued by the increase of p75NTR expression after liver injury and hypothesized that p75NTR might regulate the progression of liver disease," said Akassoglou. "By identifying p75NTR as the specific molecular link between HSCs and liver regeneration, p75NTR could provide a new therapeutic target for promoting cell regeneration and repair during chronic liver disease or injury."

This discovery suggests the importance of sustaining p75 and early HSC activation -- for example, in the case of liver transplantation when regeneration of liver cells is critical.

Additional contributors to the paper are first author Melissa A. Passino, Ryan A. Adams and Shoana L. Sikorski of the UCSD Department of Pharmacology. The research was supported by a grant from the National Institutes of Health/National Institute of Neurological Disorders and Stroke.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Researchers Identify Critical Receptor In Liver Regeneration." ScienceDaily. ScienceDaily, 30 March 2007. <www.sciencedaily.com/releases/2007/03/070329145930.htm>.
University of California - San Diego. (2007, March 30). Researchers Identify Critical Receptor In Liver Regeneration. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2007/03/070329145930.htm
University of California - San Diego. "Researchers Identify Critical Receptor In Liver Regeneration." ScienceDaily. www.sciencedaily.com/releases/2007/03/070329145930.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins