Featured Research

from universities, journals, and other organizations

Researchers Identify Critical Receptor In Liver Regeneration

Date:
March 30, 2007
Source:
University of California - San Diego
Summary:
In studies in mouse models, researchers have found that a cellular receptor involved in triggering cell death is also a necessary component of tissue repair and regeneration immediately following liver injury. This discovery could have implications for early intervention or therapy in liver disease such as cirrhosis or hepatitis.

A hepatic stellate cell activated by the p75 Neurotrophin Receptor promotes repair in the liver.
Credit: Image courtesy of University of California - San Diego

In studies in mouse models, researchers at the University of California, San Diego (UCSD) School of Medicine have found that a cellular receptor involved in triggering cell death is also a necessary component of tissue repair and regeneration immediately following liver injury. This discovery could have implications for early intervention or therapy in liver disease such as cirrhosis or hepatitis.

In a report to be published in the March 30 issue of the journal Science, Katerina Akassoglou, Ph.D. assistant professor in UCSD's Department of Pharmacology, and colleagues describe the mechanism by which cells associated with liver damage, called hepatic stellate cells (HSCs), are activated by a cell surface molecule called the p75 neurotrophin receptor (p75NTR) to promote repair in the liver.

"Many therapeutics for liver disease target HSCs in order to kill them, but our study in animal models found that their initial activity could actually be protective," said Akassoglou.

When chronic liver injury occurs, cells in the liver begin producing collagen and other proteins that lead to the formation of fibrous tissue and scarring. Akassoglou's team looked at the molecular-cellular interface to discover how tissues respond to deposition of the fibrous protein, fibrin. In studies of a mouse model with excessive fibrin deposition in the liver, the researchers found that p75NTR signaling promotes the initial activation of HSC, which stimulates the proliferation of new hepatic cells to replace those that have been damaged. The effects of p75NTR at late stages of HSC activation and liver disease remain to be determined.

"We were intrigued by the increase of p75NTR expression after liver injury and hypothesized that p75NTR might regulate the progression of liver disease," said Akassoglou. "By identifying p75NTR as the specific molecular link between HSCs and liver regeneration, p75NTR could provide a new therapeutic target for promoting cell regeneration and repair during chronic liver disease or injury."

This discovery suggests the importance of sustaining p75 and early HSC activation -- for example, in the case of liver transplantation when regeneration of liver cells is critical.

Additional contributors to the paper are first author Melissa A. Passino, Ryan A. Adams and Shoana L. Sikorski of the UCSD Department of Pharmacology. The research was supported by a grant from the National Institutes of Health/National Institute of Neurological Disorders and Stroke.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Researchers Identify Critical Receptor In Liver Regeneration." ScienceDaily. ScienceDaily, 30 March 2007. <www.sciencedaily.com/releases/2007/03/070329145930.htm>.
University of California - San Diego. (2007, March 30). Researchers Identify Critical Receptor In Liver Regeneration. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2007/03/070329145930.htm
University of California - San Diego. "Researchers Identify Critical Receptor In Liver Regeneration." ScienceDaily. www.sciencedaily.com/releases/2007/03/070329145930.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins