Featured Research

from universities, journals, and other organizations

Small Molecules Engineered To Probe Proteins Deep Inside Cell Membrane

Date:
April 1, 2007
Source:
University of Pennsylvania School of Medicine
Summary:
To probe the secrets of inaccessible transmembrane proteins, researchers at the University of Pennsylvania School of Medicine have designed peptides that are able to bind to specific inner regions, using computer algorithms, and information from existing protein sequence and structure databases. This study looks at how the binding of these designed peptides affects the crucial first steps in blood clotting.

Artist rendering of integrin transmembrane protein. The red portion is the beta subunit; the blue is both the larger alpha subunit and the smaller bound peptide.
Credit: Barbara Seymour

Proteins, which form much of the molecular machinery required for life, are the targets of most drug molecules. One third of all proteins are membrane proteins -- embedded within the cell's fatty outer layer. While scientists can easily study the other two-thirds using such tools as antibodies, they have not had such methods to investigate the membrane-embedded portions of proteins.

To probe the secrets of these seemingly inaccessible proteins, researchers at the University of Pennsylvania School of Medicine have designed peptides that are able to bind to specific regions of transmembrane proteins, using computer algorithms, and information from existing protein sequence and structure databases. This study, which appears in the March 30 issue of Science, looks at how the binding of these designed peptides affects the crucial first steps in blood clotting.

"We can now actually interrogate parts of proteins within the membrane," says senior author William F. DeGrado, PhD, Professor of Biochemistry and Biophysics. "We used computer programs to design small proteins called peptides that can bind to only one of a number of closely related membrane proteins."

The researchers targeted two transmembrane proteins called integrins that influence the behavior of platelets, small blood cells important in clotting. One of these, the áIIbâ3 integrin, the most prominent integrin on platelets, is involved in making platelet aggregates, an important first step in the clotting process.

The other integrin, called áVâ3, behaves much like áIIbâ3, in that it causes platelets to stick to certain proteins on the outside of the cell. "We wanted to see if we could differentiate between the two integrins using two different peptides -- and, in fact, we can," notes co-senior author Joel Bennett, MD, Professor of Medicine, who works with proteins and cells important in clotting.

When the designed peptide is inserted into the platelet membrane it binds to the portion of the integrin within the membrane, and subsequently perturbs another function in the clotting process downstream. "By having molecules that bind to the membrane-embedded portions of these proteins, we were able to address questions concerning the way that these proteins are regulated to cause clotting," explains co-first author Joanna Slusky, a doctoral student in the DeGrado laboratory.

"Therapeutics derived from this approach are a long way off, but this method allows us to now study these interactions that are so fundamental to the way in which cells cooperate to carry out essential functions," says Bennett. "In the future, this knowledge can provide insights for identifying novel drug targets."

The National Institute of General Medical Science and the National Heart, Lung, and Blood Institute funded the research.

Coauthors of the study are co-first author Hang Yin, Bryan W. Berger, Robin S. Walters, Gaston Vilaire, Rustem I. Litvinov, James D. Lear, and Gregory A. Caputo, all from Penn.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Small Molecules Engineered To Probe Proteins Deep Inside Cell Membrane." ScienceDaily. ScienceDaily, 1 April 2007. <www.sciencedaily.com/releases/2007/03/070330185101.htm>.
University of Pennsylvania School of Medicine. (2007, April 1). Small Molecules Engineered To Probe Proteins Deep Inside Cell Membrane. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2007/03/070330185101.htm
University of Pennsylvania School of Medicine. "Small Molecules Engineered To Probe Proteins Deep Inside Cell Membrane." ScienceDaily. www.sciencedaily.com/releases/2007/03/070330185101.htm (accessed August 1, 2014).

Share This




More Plants & Animals News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) — Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) — Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com
Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) — Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) — With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins