Featured Research

from universities, journals, and other organizations

Small Molecules Engineered To Probe Proteins Deep Inside Cell Membrane

Date:
April 1, 2007
Source:
University of Pennsylvania School of Medicine
Summary:
To probe the secrets of inaccessible transmembrane proteins, researchers at the University of Pennsylvania School of Medicine have designed peptides that are able to bind to specific inner regions, using computer algorithms, and information from existing protein sequence and structure databases. This study looks at how the binding of these designed peptides affects the crucial first steps in blood clotting.

Artist rendering of integrin transmembrane protein. The red portion is the beta subunit; the blue is both the larger alpha subunit and the smaller bound peptide.
Credit: Barbara Seymour

Proteins, which form much of the molecular machinery required for life, are the targets of most drug molecules. One third of all proteins are membrane proteins -- embedded within the cell's fatty outer layer. While scientists can easily study the other two-thirds using such tools as antibodies, they have not had such methods to investigate the membrane-embedded portions of proteins.

To probe the secrets of these seemingly inaccessible proteins, researchers at the University of Pennsylvania School of Medicine have designed peptides that are able to bind to specific regions of transmembrane proteins, using computer algorithms, and information from existing protein sequence and structure databases. This study, which appears in the March 30 issue of Science, looks at how the binding of these designed peptides affects the crucial first steps in blood clotting.

"We can now actually interrogate parts of proteins within the membrane," says senior author William F. DeGrado, PhD, Professor of Biochemistry and Biophysics. "We used computer programs to design small proteins called peptides that can bind to only one of a number of closely related membrane proteins."

The researchers targeted two transmembrane proteins called integrins that influence the behavior of platelets, small blood cells important in clotting. One of these, the áIIbâ3 integrin, the most prominent integrin on platelets, is involved in making platelet aggregates, an important first step in the clotting process.

The other integrin, called áVâ3, behaves much like áIIbâ3, in that it causes platelets to stick to certain proteins on the outside of the cell. "We wanted to see if we could differentiate between the two integrins using two different peptides -- and, in fact, we can," notes co-senior author Joel Bennett, MD, Professor of Medicine, who works with proteins and cells important in clotting.

When the designed peptide is inserted into the platelet membrane it binds to the portion of the integrin within the membrane, and subsequently perturbs another function in the clotting process downstream. "By having molecules that bind to the membrane-embedded portions of these proteins, we were able to address questions concerning the way that these proteins are regulated to cause clotting," explains co-first author Joanna Slusky, a doctoral student in the DeGrado laboratory.

"Therapeutics derived from this approach are a long way off, but this method allows us to now study these interactions that are so fundamental to the way in which cells cooperate to carry out essential functions," says Bennett. "In the future, this knowledge can provide insights for identifying novel drug targets."

The National Institute of General Medical Science and the National Heart, Lung, and Blood Institute funded the research.

Coauthors of the study are co-first author Hang Yin, Bryan W. Berger, Robin S. Walters, Gaston Vilaire, Rustem I. Litvinov, James D. Lear, and Gregory A. Caputo, all from Penn.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Small Molecules Engineered To Probe Proteins Deep Inside Cell Membrane." ScienceDaily. ScienceDaily, 1 April 2007. <www.sciencedaily.com/releases/2007/03/070330185101.htm>.
University of Pennsylvania School of Medicine. (2007, April 1). Small Molecules Engineered To Probe Proteins Deep Inside Cell Membrane. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2007/03/070330185101.htm
University of Pennsylvania School of Medicine. "Small Molecules Engineered To Probe Proteins Deep Inside Cell Membrane." ScienceDaily. www.sciencedaily.com/releases/2007/03/070330185101.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) — Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) — Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) — Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) — Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins