Featured Research

from universities, journals, and other organizations

Lab-on-a-chip: High-pressure Chemistry In Ultra Small Pressure Cooker

Date:
April 16, 2007
Source:
Netherlands Organization for Scientific Research
Summary:
Small, clever process technology is essential for the future, but is it possible? Dutch-sponsored researcher Fernando Benito López investigated the possibilities of the so-called lab-on-a-chip: microreactor chips in which chemical reactions can take place under (high) pressure. The results were very promising. The reaction rate increased compared to conventional equipment, the measurements were accurate and safety was not a problem. Moreover it was possible to follow and regulate the reaction during the process.

Benito López developed a miniaturised Total Analysis System (µTAS).
Credit: Image courtesy of Netherlands Organization for Scientific Research

Small, clever process technology is essential for the future, but is it possible? Dutch-sponsored researcher Fernando Benito López investigated the possibilities of the so-called lab-on-a-chip: microreactor chips in which chemical reactions can take place under (high) pressure. The results were very promising. The reaction rate increased compared to conventional equipment, the measurements were accurate and safety was not a problem. Moreover it was possible to follow and regulate the reaction during the process.

Benito López started on this project by making microreactor chips that could measure high-pressure chemical reactions in two ways: with stationary or continuously flowing substances. His first chip was made of silicon fibre and could withstand a pressure up to 600 bar. Finding the optimal flow was the next step. After experiments with materials, a tube-like structure that was completely etched with hydrogen fluoride was found to be the most suitable.

In such a chip, the researcher allowed chemical reactions to take place under pressures ranging from 110 to 690 bar with continuously flowing substances. Increasing pressure and the rapid mixing were found to favourably affect the rate of the reaction; up to 1.7 times faster than the advanced, expensive conventional equipment.

The reactions carried out were successful for pressures up to 600 bar and for volumes ranging from microlitres to nanolitres. The combination of pressure and the reduced dimensions of the equipment were found to lead to faster reaction rates than in the equipment used to date, whilst the safety risks decreased significantly. Further on-line detectors can be attached to the chip with which the reaction can be monitored and therefore controlled.

The development of a miniaturised Total Analysis System (µTAS) is therefore no longer a thing of the future.

Benito López’s research was funded by Technology Foundation STW.


Story Source:

The above story is based on materials provided by Netherlands Organization for Scientific Research. Note: Materials may be edited for content and length.


Cite This Page:

Netherlands Organization for Scientific Research. "Lab-on-a-chip: High-pressure Chemistry In Ultra Small Pressure Cooker." ScienceDaily. ScienceDaily, 16 April 2007. <www.sciencedaily.com/releases/2007/04/070413100832.htm>.
Netherlands Organization for Scientific Research. (2007, April 16). Lab-on-a-chip: High-pressure Chemistry In Ultra Small Pressure Cooker. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2007/04/070413100832.htm
Netherlands Organization for Scientific Research. "Lab-on-a-chip: High-pressure Chemistry In Ultra Small Pressure Cooker." ScienceDaily. www.sciencedaily.com/releases/2007/04/070413100832.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins