Featured Research

from universities, journals, and other organizations

Lab-on-a-chip Device To Speed Proteomics Research

Date:
May 3, 2007
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Future proteomics research should see a substantial acceleration with the development of a new device that provides the first monolithic interface between mass spectrometry and silicon/silica-based microfluidic "lab-on-a-chip" technologies. This new device is called a multinozzle nanoelectrospray emitter array.

This zoom-in Scanning Electron Microscope image shows a five-nozzle M3 emitter, where each nozzle measures 10x12 microns.
Credit: Department of Energy’s Lawrence Berkeley National Laboratory

In recent years, the science of biology has been dominated by genomics – the study of genes and their functions. The genomics era is now making way for the era of proteomics – the study of the proteins that genes encode.

Future proteomics research should see a substantial acceleration with the development of a new device that provides the first monolithic interface between mass spectrometry and silicon/silica-based microfluidic “lab-on-a-chip” technologies. This new device, called a multinozzle nanoelectrospray emitter array, was developed by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab).

“Proteomics has become an indispensable tool in biological research, be it diagnostics, therapeutics, bioenergy or stem cell research, and mass spectrometry is proteomics’ enabling technology,” said Daojing Wang, a scientist with Berkeley Lab’s Life Sciences Division who leads the proteomics research group and was the principal investigator behind the development of the multinozzle nanoelectrospray emitter.

“Lab-on-a-chip technology has enormous potential for proteomics research,” Wang said, “but for this potential to be fully realized, a major advance in interfacing microfluidics with mass spectrometry is needed. Our device provides that interface.”

When the Human Genome Project was completed in 2003, giving scientists a complete catalogue of human DNA, the next big effort focused on genomics, identifying DNA sequences that code for proteins, aka, genes. With the identification of each and every new gene, the emphasis shifts to determining the biochemical function of its associated proteins.

All biological cells are constructed from aggregations of proteins that interact with other protein aggregations like an elaborate, finely choreographed network of interdependent machines. This biomolecular machinery also controls nearly every chemical process inside a cell, and forms much of the connectivity that enable cells to come together into tissues and organs. One of the first steps in proteomics research is to determine the identity and modifications of individual proteins that make up a cell or tissue sample. The principal means of doing this is through mass spectrometry.

Mass spectrometers use a combination of ionization and magnets to separate a protein’s constituent peptides. Detection and analysis of this mass spectrum can then be used to identify the protein and quantify its presence in a sample. The most popular technique today for ionizing a protein’s constituents for mass spectrometry is to liquefy the protein and send it through electrically charged capillaries – a technique known as electrospray ionization. One of the best candidates for high throughput integration of the detection and analysis processes is to interface the mass spectrometers with lab-on-a-chip technology, where biological fluids are introduced onto a microprocessor chip. However, microfluidic analysis of proteins has been a separate process from mass spectrometry - until now.

“Ours is the first report of a silicon/silica microfluidic channel that is integrated monolithically with a multinozzle nanoelectrospray emitter,” said Wang. “This paves the way for the large scale integration of mass spectrometry and lab-on-a-chip analysis in proteomics research.”

Each emitter consists of a parallel array of silica nozzles protruding out from a hollow silicon sliver with a conduit size of 100 x 10 microns. Multiple nozzles (100 nozzles per millimeter was a typical density) were used rather than single nozzles in order to reduce the pressure and clogging problems that arise as the microfluidic channels on a chip downsize to a nanometer scale. The emitters and their nozzles were produced from a silicon wafer, with the dimension and number of nozzles systematically and precisely controlled during the fabrication process. Fabrication required the use of only a single mask and involved photolithographic patterning and various etching processes.

Said Peidong Yang, “Once integrated with a mass spectrometer, our microfabricated monolithic multinozzle emitters achieved a sensitivity and stability in peptide and protein detection comparable to commercial silica-based capillary nanoelectrospray tips. This indicates that our emitters could serve as a critical component in a fully integrated silicon/silica-based micro total analysis system for proteomics.”

Added Daojing Wang, “This is also the first report of a multinozzle emitter that can be fabricated through standard microfabrication processes. In addition to having lower back pressure and higher sensitivity, multinozzle emitters also provide a means to systematically study the electrospray ionization processes because the size of each nozzle and density of nozzles on the emitters can be adjusted.”

According to Wang and Yang, the fabrication and application of the microfabricated monolithic multinozzle emitters, called “M3 emitters” for short, could be commercialized immediately and should be highly competitive with current silica capillary emitters in terms of cost and mass production.

“We are now in the process of creating a chip that integrates sample processing and preparation as well as detection and analysis,” said Wang. “The ability to perform the full process on a single chip has enormous commercial potential.”

Wang and Peidong Yang, a leading nanoscience authority with Berkeley Lab’s Molecular Foundry and Materials Sciences Division, and also a chemistry professor with the University of California’s Berkeley campus, co-authored a paper on this work which is being published by the American Chemical Society (ACS). The paper, which is now available in the on-line version. is entitled: “Microfabricated Monolithic Multinozzle Emitters for Nanoelectrospray Mass Spectrometry.”

Other authors of the ACS paper were Woong Kim, a postdoctoral fellow in the Molecular Foundry, and Mingquan Guo, a postdoctoral fellow in the Life Sciences Division.

Berkeley lab has filed for a patent on this technology. The research was supported by a grant from the National Institutes of Health, with some of the work done at Berkeley Lab’s Molecular Foundry, which is supported by the Office of Science in the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Lab-on-a-chip Device To Speed Proteomics Research." ScienceDaily. ScienceDaily, 3 May 2007. <www.sciencedaily.com/releases/2007/05/070502143620.htm>.
DOE/Lawrence Berkeley National Laboratory. (2007, May 3). Lab-on-a-chip Device To Speed Proteomics Research. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2007/05/070502143620.htm
DOE/Lawrence Berkeley National Laboratory. "Lab-on-a-chip Device To Speed Proteomics Research." ScienceDaily. www.sciencedaily.com/releases/2007/05/070502143620.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins