Featured Research

from universities, journals, and other organizations

Platinum Nanocrystals Boost Catalytic Activity For Fuel Oxidation, Hydrogen Production

Date:
May 4, 2007
Source:
Georgia Institute of Technology
Summary:
A research team composed of electrochemists and materials scientists from two continents has produced a new form of the industrially-important metal platinum: 24-facet nanocrystals whose catalytic activity per unit area can be as much as four times higher than existing commercial platinum catalysts.

(A) Low-magnification SEM image of a platinum tetrahexahedral nanocrystal and its geometrical model. (B) High-resolution transmission electron microscopy image recorded from a platinum tetrahexahedral nanocrystal to reveal surface atomic steps in the areas made of (210) and (310) sub-facets.
Credit: Zhong Lin Wang

A research team composed of electrochemists and materials scientists from two continents has produced a new form of the industrially-important metal platinum: 24-facet nanocrystals whose catalytic activity per unit area can be as much as four times higher than existing commercial platinum catalysts.

The new platinum nanocrystals, whose "tetrahexahedral" structure had not previously been reported in the metal, could improve the efficiency of chemical processes such as those used to catalyze fuel oxidation and produce hydrogen for fuel cells.

"If we are going to have a hydrogen economy, we will need better catalysts," said Zhong Lin Wang, a Regents Professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. "This new shape for platinum catalyst nanoparticles greatly improves their activity. This work also demonstrates a new method for producing metallic nanocrystals with high-energy surfaces."

The new nanocrystals, produced electrochemically from platinum nanospheres on a carbon substrate, remain stable at high temperatures. Their sizes can be controlled by varying the number of cycles of "square wave" electrical potential applied to them.

"This electrochemical technique is vital to producing such tetrahexahedral platinum nanocrystals," said Shi-Gang Sun, an Eminent Professor in the College of Chemistry and Chemical Engineering at the Xiamen University in China. "The technique used to produce the new platinum nanostructures may also have applications to other catalytic metals."

The research was supported by the Natural Science Foundation of China, Special Funds for Major State Basic Research Project of China and the U.S. National Science Foundation. Details will be reported in the May 4 issue of the journal Science.

Platinum plays a vital role as a catalyst for many important reactions, used in industrial chemical processing, in motor vehicle catalytic converters that reduce exhaust pollution, in fuel cells and in sensors. Commercially available platinum nanocrystals -- which exist as cubes, tetrahedra and octahedra -- have what are termed "low-index" facets, characterized by the numbers {100} or {111}. Because of their higher catalytic activity, "high-index" surfaces would be preferable -- but until now, platinum nanocrystals with such surfaces have never been synthesized -- and therefore have not been available for industrial use.

The nanocrystals produced by the U.S.-Chinese team have high energy surfaces that include numerous "dangling bonds" and "atomic steps" that facilitate chemical reactions. These structures, characterized by {210}, {730} or {520} facets, remain stable at high temperatures -- up to 800 degrees Celsius in testing done so far. That stability will allow them to be recycled and re-used in catalytic reactions, Wang said.

Though the process must still be fine-tuned, the researchers have learned to control the size of the particles by varying the processing conditions. They are able to control the size such that only 4.5 percent of the nanocrystals produced are larger or smaller than the target size.

"In nanoparticle research, two things are important: size control and shape control," said Wang. "From a purity point of view, we have been able to obtain a high yield of nanocrystals whose shape was a real surprise."

Depending on conditions, the new nanocrystals can be as much as four times more catalytically active per unit area than existing commercial catalysts. But since the new structures tested are more than 20 times larger than existing platinum catalysts, they require more of the metal -- and hence are less active per unit weight.

"We need to find a way to make these nanocrystals smaller while preserving the shape," Wang noted. "If we can reduce the size through better control of processing conditions, we will have a catalytic system that would allow production of hydrogen with greater efficiency."

Production of the new crystals begins with polycrystalline platinum spheres about 750 nanometers in diameter that are electrodeposited onto a substrate of amorphous -- also known as "glassy" -- carbon. Placed in an electrochemical cell with ascorbic acid and sulfuric acid, the spheres are then subjected to "square wave" potential that alternates between positive and negative potentials at a rate of 10 to 20 Hertz.

The electrochemical oxidation-reduction reaction converts the spheres to smaller nanocrystals over a period of time ranging from 10 to 60 minutes. The role of the carbon substrate isn't fully understood, but it somehow enhances the uniformity of the nanocrystals.

"The key to producing this shape is to tune the voltage and the time period under which it is applied," Sun noted. "By changing the experimental conditions, we can control the size with a high level of uniformity."

Scanning electron microscopy shows that the sizes average 81 nanometers in diameter, with the smallest just 20 nanometers. The microscopy also found that the structures were composed of single crystals with no dislocations.

"Not only do we have a beautiful shape -- which was observed for the first time in this research -- but we also have a very valuable catalyst," Sun added. "And because these nanocrystals are stable, the shape is preserved after the catalytic reaction, which will allow us to use the same nanocrystals over and over again."

In addition to Sun and Wang, the research team included Na Tian and Zhi-You Zhou from the College of Chemistry and Engineering at Xiamen University in China and Yong Ding from the School of Materials Science and Engineering at Georgia Tech in the United States.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "Platinum Nanocrystals Boost Catalytic Activity For Fuel Oxidation, Hydrogen Production." ScienceDaily. ScienceDaily, 4 May 2007. <www.sciencedaily.com/releases/2007/05/070503140647.htm>.
Georgia Institute of Technology. (2007, May 4). Platinum Nanocrystals Boost Catalytic Activity For Fuel Oxidation, Hydrogen Production. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2007/05/070503140647.htm
Georgia Institute of Technology. "Platinum Nanocrystals Boost Catalytic Activity For Fuel Oxidation, Hydrogen Production." ScienceDaily. www.sciencedaily.com/releases/2007/05/070503140647.htm (accessed September 1, 2014).

Share This




More Matter & Energy News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins