Featured Research

from universities, journals, and other organizations

Student Creates Garment With Bacteria-trapping Nanofibers

Date:
May 7, 2007
Source:
Cornell University
Summary:
Fashion designers and fiber scientists at Cornell have taken "functional clothing" to a whole new level. They have designed a garment that can prevent colds and flu and never needs washing, and another that destroys harmful gases and protects the wearer from smog and air pollution. The two-toned gold dress and metallic denim jacket contain cotton fabrics coated with nanoparticles that give them functional qualities never before seen in the fashion world.

Design student Olivia Ong '07 hugs two garments, treated with metallic nanoparticles through a collaboration with fiber scientists Juan Hinestroza and Hong Dong, that she designed as part of her fashion line, "Glitterati."
Credit: Anne Ju/Cornell Chronicle

Fashion designers and fiber scientists at Cornell have taken "functional clothing" to a whole new level. They have designed a garment that can prevent colds and flu and never needs washing, and another that destroys harmful gases and protects the wearer from smog and air pollution.

The two-toned gold dress and metallic denim jacket, featured at the April 21 Cornell Design League fashion show, contain cotton fabrics coated with nanoparticles that give them functional qualities never before seen in the fashion world.

Designed by Olivia Ong '07 in the College of Human Ecology's Department of Fiber Science and Apparel Design, the garments were infused with their unusual qualities by fiber science assistant professor Juan Hinestroza and his postdoctoral researcher Hong Dong. Apparel design assistant professor Van Dyke Lewis launched the collaboration by introducing Ong to Hinestroza several months ago.

"We think this is one of the first times that nanotechnology has entered the fashion world," Hinestroza said. He noted one drawback may be the garments' price: one square yard of nano-treated cotton would cost about $10,000.

Ong's dress and jacket, part of her original fashion line called "Glitterati," look innocently hip. But closer inspection -- with a microscope, that is -- shows an army of electrostatically charged nanoparticles creating a protective shield around the cotton fibers in the top part of the dress, and the sleeves, hood and pockets of the jacket.

"It's something really moving toward the future, and really advanced," said Ong, who graduates in December and aspires to design school. "I thought this could potentially be what fashion is moving toward."

Dong explained that the fabrics were created by dipping them in solutions containing nanoparticles synthesized in Hinestroza's lab. The resultant colors are not the product of dyes, but rather, reflections of manipulation of particle size or arrangement.

The upper portion of the dress contains cotton coated with silver nanoparticles. Dong first created positively charged cotton fibers using ammonium- and epoxy-based reactions, inducing positive ionization. The silver particles, about 10-20 nanometers across (a nanometer is one-billionth of a meter) were synthesized in citric acid, which prevented nanoparticle agglomeration.

Dipping the positively charged cotton into the negatively charged silver nanoparticle solution resulted in the particles clinging to the cotton fibers. Silver possesses natural antibacterial qualities that are strengthened at the nanoscale, thus giving Ong's dress the ability to deactivate many harmful bacteria and viruses. The silver infusion also reduces the need to wash the garment, since it destroys bacteria, and the small size of the particles prevents soiling and stains.

The denim jacket includes a hood, sleeves and pockets with soft, gray tweed cotton embedded with palladium nanoparticles, about 5-10 nanometers in length. To create the material, Dong placed negatively charged palladium crystals onto positively charged cotton fibers.

Ong, though strictly a designer, was drawn especially to the science behind creating the anti-smog jacket. "I thought it would be cool if [wearers] could wipe their hands on their sleeves or pockets," Ong said.

Ong incorporated the resultant cotton fiber into a jacket with the ability to oxidize smog. Such properties would be useful for someone with allergies, or for protecting themselves from harmful gases in the contaminated air, such as in a crowded or polluted city.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Student Creates Garment With Bacteria-trapping Nanofibers." ScienceDaily. ScienceDaily, 7 May 2007. <www.sciencedaily.com/releases/2007/05/070506091754.htm>.
Cornell University. (2007, May 7). Student Creates Garment With Bacteria-trapping Nanofibers. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2007/05/070506091754.htm
Cornell University. "Student Creates Garment With Bacteria-trapping Nanofibers." ScienceDaily. www.sciencedaily.com/releases/2007/05/070506091754.htm (accessed September 23, 2014).

Share This



More Matter & Energy News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
The Hyped-Up Big Bang Discovery Has A Dust Problem

The Hyped-Up Big Bang Discovery Has A Dust Problem

Newsy (Sep. 22, 2014) An analysis of new satellite data casts serious doubt on a previous study about the Big Bang that was once hailed as revolutionary. Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins