Featured Research

from universities, journals, and other organizations

Fragile X Syndrome: A Stimulating Environment Restores Neuronal Function In Mice

Date:
May 25, 2007
Source:
Cell Press
Summary:
A new study of the malfunctioning neuronal machinery of Fragile X syndrome reveals that it can be restored by a stimulating environment. The study found that mice genetically altered to have the same defect as humans with the disorder benefited from an environment with constantly changing toys and access to "play cages." Fragile X syndrome is the most common form of inherited mental retardation, occurring in 1 in 3600 males and 1 in 4000 to 6000 females.

A new study of the malfunctioning neuronal machinery of Fragile X syndrome reveals that it can be restored by a stimulating environment. The study found that mice genetically altered to have the same defect as humans with the disorder benefited from an environment with constantly changing toys and access to "play cages." Fragile X syndrome is the most common form of inherited mental retardation, occurring in 1 in 3600 males and 1 in 4000 to 6000 females.

To understand the details of the neuronal pathology of Fragile X syndrome, the researchers, led by Huibert Mansvelder, studied mice in which the same gene that causes the disease in humans had been knocked out. The scientists performed a detailed analysis of the electrophysiological properties of neurons in the prefrontal cortex, a region responsible for higher cognitive functions, including learning and memory, that are affected in humans with the disorder.

The scientists' analysis revealed that the neurons in the mice showed reduction of a particular form of a process called "long-term potentiation" that is central to the formation of new circuit pathways in learning and memory. The researchers' experiments showed that this reduction was due to abnormalities in the pore-like channels that regulate the flow of calcium into neurons.

Importantly, they found that increased stimulation of neurons in the mice, which enhanced calcium signaling, could restore normal long-term potentiation and neuronal plasticity.

There have been reports that Fragile X patients can still learn and memorize information but need more repetition and stimulation. Also, studies by other researchers had shown that exposing Fragile X knockout mice to a stimulating environment ameliorated behavioral and neuronal abnormalities.

So, Mansvelder and colleagues tested whether exposure of the knockout mice to an enriched environment caused higher stimulation that would restore normal neuronal plasticity. They gave such mice a variety of cage toys, and also gave them time in play cages that contained running wheels, tunnels, different bedding material, and interesting objects.

The researchers found that such an enriched environment did, indeed, restore normal neuronal plasticity. The researchers concluded that "increased sensory, cognitive, and motor stimulation by environmental enrichment facilitates the development of synaptic plasticity in cortical areas involved in higher cognitive function. The results of this study demonstrate that in prefrontal cortex of Fragile X knockout mice, excitatory synapses can show lasting increases in synaptic strength, but this requires increased neuronal activity to occur."

The researchers include Rhiannon M. Meredith, Carl D. Holmgren, Meredith Weidum, Nail Burnashev, and Huibert D. Mansvelder, VU University Amsterdam in Amsterdam.

This work was supported by grants from the Dutch Medical Research Council (ZonMW, 911-03-014 to H.D.M. and 912-04-022 to H.D.M. and N.B.) and the Royal Netherlands Academy of Arts and Sciences (KNAW, to H.D.M.). The Department of Experimental Neurophysiology was financially supported by NeuroBsik .

Reference: Meredith et al.: "Increased Threshold for Spike-Timing-Dependent Plasticity Is Caused by Unreliable Calcium Signaling in Mice Lacking Fragile X Gene Fmr1." Publishing in Neuron 54, 627--638, May 24, 2007. DOI 10.1016/j.neuron.2007.04.028.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Fragile X Syndrome: A Stimulating Environment Restores Neuronal Function In Mice." ScienceDaily. ScienceDaily, 25 May 2007. <www.sciencedaily.com/releases/2007/05/070523124401.htm>.
Cell Press. (2007, May 25). Fragile X Syndrome: A Stimulating Environment Restores Neuronal Function In Mice. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2007/05/070523124401.htm
Cell Press. "Fragile X Syndrome: A Stimulating Environment Restores Neuronal Function In Mice." ScienceDaily. www.sciencedaily.com/releases/2007/05/070523124401.htm (accessed September 16, 2014).

Share This



More Plants & Animals News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins