Featured Research

from universities, journals, and other organizations

Fragile X Syndrome: A Stimulating Environment Restores Neuronal Function In Mice

Date:
May 25, 2007
Source:
Cell Press
Summary:
A new study of the malfunctioning neuronal machinery of Fragile X syndrome reveals that it can be restored by a stimulating environment. The study found that mice genetically altered to have the same defect as humans with the disorder benefited from an environment with constantly changing toys and access to "play cages." Fragile X syndrome is the most common form of inherited mental retardation, occurring in 1 in 3600 males and 1 in 4000 to 6000 females.

A new study of the malfunctioning neuronal machinery of Fragile X syndrome reveals that it can be restored by a stimulating environment. The study found that mice genetically altered to have the same defect as humans with the disorder benefited from an environment with constantly changing toys and access to "play cages." Fragile X syndrome is the most common form of inherited mental retardation, occurring in 1 in 3600 males and 1 in 4000 to 6000 females.

Related Articles


To understand the details of the neuronal pathology of Fragile X syndrome, the researchers,  led by Huibert Mansvelder, studied mice in which the same gene that causes the disease in humans had been knocked out. The scientists performed a detailed analysis of the electrophysiological properties of neurons in the prefrontal cortex, a region responsible for higher cognitive functions, including learning and memory, that are affected in humans with the disorder.

The scientists' analysis revealed that the neurons in the mice showed reduction of a particular form of a process called "long-term potentiation" that is central to the formation of new circuit pathways in learning and memory. The researchers' experiments showed that this reduction was due to abnormalities in the pore-like channels that regulate the flow of calcium into neurons.

Importantly, they found that increased stimulation of neurons in the mice, which enhanced calcium signaling, could restore normal long-term potentiation and neuronal plasticity.

There have been reports that Fragile X patients can still learn and memorize information but need more repetition and stimulation. Also, studies by other researchers had shown that exposing Fragile X knockout mice to a stimulating environment ameliorated behavioral and neuronal abnormalities.

So, Mansvelder and colleagues tested whether exposure of the knockout mice to an enriched environment caused higher stimulation that would restore normal neuronal plasticity. They gave such mice a variety of cage toys, and also gave them time in play cages that contained running wheels, tunnels, different bedding material, and interesting objects.

The researchers found that such an enriched environment did, indeed, restore normal neuronal plasticity. The researchers concluded that "increased sensory, cognitive, and motor stimulation by environmental enrichment facilitates the development of synaptic plasticity in cortical areas involved in higher cognitive function. The results of this study demonstrate that in prefrontal cortex of Fragile X knockout mice, excitatory synapses can show lasting increases in synaptic strength, but this requires increased neuronal activity to occur."

The researchers include Rhiannon M. Meredith, Carl D. Holmgren, Meredith Weidum, Nail Burnashev, and Huibert D. Mansvelder, VU University Amsterdam in Amsterdam.

This work was supported by grants from the Dutch Medical Research Council (ZonMW, 911-03-014 to H.D.M. and 912-04-022 to H.D.M. and N.B.) and the Royal Netherlands Academy of Arts and Sciences (KNAW, to H.D.M.). The Department of Experimental Neurophysiology was financially supported by NeuroBsik .

Reference: Meredith et al.: "Increased Threshold for Spike-Timing-Dependent Plasticity Is Caused by Unreliable Calcium Signaling in Mice Lacking Fragile X Gene Fmr1." Publishing in Neuron 54, 627--638, May 24, 2007. DOI 10.1016/j.neuron.2007.04.028. 


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Fragile X Syndrome: A Stimulating Environment Restores Neuronal Function In Mice." ScienceDaily. ScienceDaily, 25 May 2007. <www.sciencedaily.com/releases/2007/05/070523124401.htm>.
Cell Press. (2007, May 25). Fragile X Syndrome: A Stimulating Environment Restores Neuronal Function In Mice. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2007/05/070523124401.htm
Cell Press. "Fragile X Syndrome: A Stimulating Environment Restores Neuronal Function In Mice." ScienceDaily. www.sciencedaily.com/releases/2007/05/070523124401.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lioness Has Rare Five-Cub Litter

Raw: Lioness Has Rare Five-Cub Litter

AP (Mar. 27, 2015) — A lioness in Pakistan has given birth to five cubs, twice the usual size of a litter. Queen gave birth to two other cubs just nine months ago. (March 27) Video provided by AP
Powered by NewsLook.com
Jockey Motion Tracking Reveals Racing Prowess

Jockey Motion Tracking Reveals Racing Prowess

Reuters - Innovations Video Online (Mar. 26, 2015) — Using motion tracking technology, researchers from the Royal Veterinary College (RVC) are trying to establish an optimum horse riding style to train junior jockeys, as well as enhance safety, health and well-being of both racehorses and jockeys. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Bear Cubs Tumble for the Media

Bear Cubs Tumble for the Media

Reuters - Light News Video Online (Mar. 26, 2015) — Two Andean bear cubs are unveiled at the U.S. National Zoo in Washington, D.C. Alicia Powell reports. Video provided by Reuters
Powered by NewsLook.com
Botswana Talks to End Illegal Wildlife Trade

Botswana Talks to End Illegal Wildlife Trade

AFP (Mar. 25, 2015) — Experts are gathering in Botswana to try to end the illegal wildlife trade that is decimating populations of elephants, rhinos and other threatened species. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins