Featured Research

from universities, journals, and other organizations

Pesticides Choke Pathway For Nature To Produce Nitrogen For Crops

Date:
June 6, 2007
Source:
University of Oregon
Summary:
Many farmers applying pesticides to boost crop yields may instead be contributing to growth problems, scientists report in a new study.

Alfalfa roots secrete chemical signals into soil to attract and recruit bacteria. These bacteria live in a plant's roots and provide a natural fertilizer source. Pictured is an alfalfa root with root hairs that have attracted rhizobia soil bacteria, which are engineered to appear in green fluorescence for easier visualization.
Credit: Image courtesy of Jennifer E. Fox

Many farmers applying pesticides to boost crop yields may instead be contributing to growth problems, scientists report in a new study.

According to years of research both in the test tube and, now, with real plants, a team of scientists reports that artificial chemicals in pesticides -- through application or exposure to crops through runoff -- disrupt natural nitrogen-fixing communications between crops and soil bacteria. The disruption results in lower yields or significantly delayed growth.

In a paper appearing online this week ahead of the regular publication by the Proceedings of the National Academy of Sciences (PNAS), the five-member team reports that agrichemicals bind to and block connections to specific receptors (NodD) inside rhizobia bacteria living in root nodules in the soil. Rotation legume crops such as alfalfa and soybeans require such interaction to naturally replace nitrogen levels that, in turn, benefit primary market crops like corn grown after legume rotations.

Legume plants secrete chemical signals that recruit the friendly bacteria, which work with the plants to convert atmospheric nitrogen into ammonia that, then, is used as fertilizer by the plants.

"Agrichemicals are blocking the host plant's phytochemical recruitment signal," said the study's lead author, Jennifer E. Fox, a postdoctoral researcher in the Center for Ecology and Evolutionary Biology at the University of Oregon. "In essence, the agrichemicals are cutting the lines of communication between the host plant and symbiotic bacteria. This is the mechanism by which these chemicals reduce symbiosis and nitrogen fixation."

Fox began the project as a doctoral student with John A. McLachlan, director of the Center for Bioenvironmental Research at Tulane University. She is working at the University of Oregon as a National Institutes of Health and National Research Service Award postdoctoral fellow under Joe Thornton, a professor of biology who focuses on phylogenomics and nuclear receptor genes.

Fox and colleagues began detailing their findings in the journal Nature (2001) and Environmental Health Perspectives (2004), testing more than 50 chemicals, including pentachlorophenol (PCP), in in-vitro assays. The paper in PNAS reports their in-vivo findings using real plants and bacteria.

None of the chemicals used in the research, including PCP, proved to be toxic to either the plants or bacteria, Fox said, "but PCP was unique in that it inhibited both seed germination and nitrogen fixation." More than 20 commonly used agricultural chemicals shared the same mechanism of action as PCP, but with varying amounts of signal disruption.

Fox, McLachlan and colleagues, in their PNAS paper, pointed to two published studies from 2000 that had found significant declines in both crop yield per unit of synthetic nitrogen fertilizer added and also a significant decline in overall symbiotic nitrogen fixation.

The most common explanation for the observations is an overuse of agrichemicals applied to legume crops. That practice sets up "a vicious cycle," Fox said, because it reduces a legume crop's natural need for nitrogen fixation but leaves a shortage of natural nitrogen in the soil for the next year's crop to utilize. Thus, she said, there is the need for yet more fertilizer.

Other reasons, Fox said, have been poor soil quality due to overuse, which strips nutrients such as nitrogen and phosphorus from the soil, and to tillage, which interrupts root structures and disturbs the nitrogen-fixing bacteria when soil is turned.

"Our research provides another explanation for declining crop yields," Fox said. "We showed that by applying pesticides that interfere with symbiotic signaling, the overall amount of symbiotic nitrogen fixation is reduced. If this natural fertilizer source is not replaced by increased application of synthetic nitrogen fertilizer, then crop yields are reduced and/or more growing time is needed for these crops to reach the yields obtained by untreated crops. We feel that this is a previously unforeseen factor contributing to declining crop yields."

The researchers say that field-wide experiments now are needed, in addition to tests to determine the exact elements of pesticides that inhibit natural plant-bacteria interaction.

In addition to Fox and McLachlan, co-authors on the PNAS paper were Jay Gulledge of the University of Louisville, Erika Engelhaupt of the University of Colorado and Matthew E. Burrow of the Center for Bioenvironmental Research and the School of Medicine at Tulane University.


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Cite This Page:

University of Oregon. "Pesticides Choke Pathway For Nature To Produce Nitrogen For Crops." ScienceDaily. ScienceDaily, 6 June 2007. <www.sciencedaily.com/releases/2007/06/070606042112.htm>.
University of Oregon. (2007, June 6). Pesticides Choke Pathway For Nature To Produce Nitrogen For Crops. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2007/06/070606042112.htm
University of Oregon. "Pesticides Choke Pathway For Nature To Produce Nitrogen For Crops." ScienceDaily. www.sciencedaily.com/releases/2007/06/070606042112.htm (accessed September 1, 2014).

Share This




More Plants & Animals News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins