Featured Research

from universities, journals, and other organizations

Ultraclean Combustion Technology Developed For Electricity Generation

Date:
August 7, 2007
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
An experimental gas turbine simulator equipped with an ultralow-emissions combustion technology called LSI has been tested successfully using pure hydrogen as a fuel -- a milestone that indicates a potential to help eliminate millions of tons of carbon dioxide and thousands of tons of NOx from power plants each year.

Robert Cheng views an LSI flame. He is touching the burner, demonstrating that it stays cool because the flame is completely lifted from its body.
Credit: Image courtesy of DOE/Lawrence Berkeley National Laboratory

An experimental gas turbine simulator equipped with an ultralow-emissions combustion technology called the low-swirl injector (LSI) has been tested successfully using pure hydrogen as a fuel – a milestone that indicates a potential to help eliminate millions of tons of carbon dioxide and thousands of tons of NOx from power plants each year.

Related Articles


The LSI holds great promise for its near-zero emissions of nitrogen oxides, gases that are emitted during the combustion of fuels such as natural gas during the production of electricity. Nitrogen oxides, or NOx, are greenhouse gases as well as components of smog.

The Department of Energy’s Office of Electricity Delivery and Energy Reliability initially funded the development of the LSI for use in industrial gas turbines for on-site (i.e. distributed) electricity production. The purpose of this research was to develop a natural gas-burning turbine using the LSI’s ability to substantially reduce NOx emissions.

Cheng, Berkeley Lab colleague David Littlejohn, and Kenneth Smith and Wazeem Nazeer from Solar Turbines Inc. of San Diego adapted the low-swirl injector technology to the Taurus 70 gas turbine that produces about seven megawatts of electricity. The team’s effort garnered them the R&D 100 honor. It is continuing the LSI development for carbon-neutral renewable fuels available from landfills and other industrial processes such as petroleum refining and waste treatments.

“This is a kind of rocket science,” says Cheng, who notes that these turbines, which are being used to produce electricity by burning gaseous fuels, are similar in operating principle to turbines that propel jet airplanes.

DOE’s Office of Fossil Energy is funding another project in which the LSI is being tested for its ability to burn syngas (a mixture of hydrogen and carbon monoxide) and hydrogen fuels in an advanced IGCC plant (Integrated Gasification Combined Cycle) called FutureGen, which is planned to be the world’s first near-zero-emissions coal power plant. The intention of the FutureGen plant is to produce hydrogen from gasification of coal and sequester the carbon dioxide generated by the process. The LSI is one of several combustion technologies being evaluated for use in the 200+- megawatt utility-size hydrogen turbine that is a key component of the FutureGen plant.

The collaboration between Berkeley Lab and the National Energy Technology Laboratory (NETL) in Morgantown, WV, recently achieved the milestone of successfully test-firing an LSI unit using pure hydrogen as its fuel.

Because the LSI is a simple and cost-effective technology that can burn a variety of fuels, it has the potential to help eliminate millions of tons of carbon dioxide and thousands of tons of NOx from power plants each year.

In a letter of support to the R&D 100 selection committee, Leonard Angello, manager of Combustion Turbine Technology for the Electric Power Research Institute, wrote: “I am impressed by the potential of this device as a critical enabling technology for the next generation coal-based Integrated Gasification Combined Cycle power plants with CO2 capture…This application holds promise for the gas turbines in IGCC power plants that operate on high-hydrogen-content syngas fuels or pure hydrogen.”

How the LSI works

The low swirl injector is a mechanically simple device with no moving parts that imparts a mild spin to the gaseous fuel and air mixture that causes the mixture to spread out. The flame is stabilized within the spreading flow just beyond the exit of the burner. Not only is the flame stable, but it also burns at a lower temperature than that of conventional burners. The production of nitrogen oxides is highly temperature-dependent, and the lower temperature of the flame reduces emissions of nitrogen oxides to very low levels.

“The LSI principle defies conventional approaches,” says Cheng. “Combustion experts worldwide are just beginning to embrace this counter-intuitive idea. Principles from turbulent fluid mechanics, thermodynamics, and flame chemistry are all required to explain the science underlying this combustion phenomenon.”

Natural gas-burning turbines with the low-swirl injector emit an order of magnitude lower levels of NOx than conventional turbines. Tests at Berkeley Lab and Solar Turbines showed that the burners with the LSI emit 2 parts per million of NOx (corrected to 15% oxygen), more than five times times less than conventional burners.

A more significant benefit of the LSI technology is its ability to burn a variety of different fuels from natural gas to hydrogen and the relative ease to incorporate it into current gas turbine design — extensive redesign of the turbine is not needed. The LSI is being designed as a drop-in component for gas-burning turbine power plants.

The LSI technology, developed by Robert Cheng of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, recently won a 2007 R&D 100 award from R&D magazine as one of the top 100 new technologies of the year. This technology is available for license for gas turbines and certain other fields of use.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Ultraclean Combustion Technology Developed For Electricity Generation." ScienceDaily. ScienceDaily, 7 August 2007. <www.sciencedaily.com/releases/2007/08/070802133443.htm>.
DOE/Lawrence Berkeley National Laboratory. (2007, August 7). Ultraclean Combustion Technology Developed For Electricity Generation. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2007/08/070802133443.htm
DOE/Lawrence Berkeley National Laboratory. "Ultraclean Combustion Technology Developed For Electricity Generation." ScienceDaily. www.sciencedaily.com/releases/2007/08/070802133443.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins