Featured Research

from universities, journals, and other organizations

X-ray Images Help Explain Limits To Insect Body Size

Date:
August 12, 2007
Source:
DOE/Argonne National Laboratory
Summary:
Researchers have cast new light on why the giant insects that lived millions of years ago disappeared.

X-ray imaging of beetles helps confirm that tracheal system design may limit size in insects. More of the body is filled with air-filled tracheal tubes in larger species, particularly in the legs, and so much larger species than exist today might not have room for enough tubes.
Credit: Jake Socha, Jaco Klok, Alex Kaiser and DOE/Argonne National Laboratory

Researchers at the U.S. Department of Energy's Argonne National Laboratory have cast new light on why the giant insects that lived millions of years ago disappeared.

Related Articles


In the late Paleozoic Era, with atmospheric oxygen levels reaching record highs, some insects evolved into giants. When oxygen levels returned to lower levels, the insect giants went extinct.

The basis of this gigantism is thought to lie in the insect respiratory system. In contrast to vertebrates, where blood transports oxygen from the lung to the cell, insects deliver oxygen directly through a network of blind-ending tracheal tubes. As insects get bigger, this type of oxygen transport becomes far less effective. But if the atmospheric oxygen levels increase, as they did in the late Paleozoic, then longer tracheal tubes can work. This would allow larger-sized insects—even giants—to evolve.

Recent research published in the journal Proceedings of the National Academy of Science helps confirm the hypothesis that the tracheal system actually limits how big insects can be. The research provides a specific explanation for what limits size in beetles: the constriction leading to the legs.

A collaborative team of researchers from Argonne's Advanced Photon Source (APS), Midwestern University and Arizona State University wanted to study how beetles' tracheal systems change as their body sizes increase. The team took advantage of richly detailed X-ray images they produced at the APS to examine the dimensions of tracheal tubes in four beetle species, ranging in body mass by a factor of 1,000.

Overall, they found that larger beetle species devote a disproportionately greater fraction of their body to tracheal tubes than do smaller species.

The team focused in particular on the passageways that lead from the body core to the head and to the legs. They reasoned that these orifices may be bottlenecks for tracheal tubes, limiting how much oxygen can be delivered to the extremities.

“We were surprised to find that the effect is most pronounced in the orifices leading to the legs, where more and more of the space is taken up by tracheal tubes in larger species,” said Alex Kaiser, biologist at Midwestern University.

They then examined the tracheal measurements of the four species to see if they could predict the largest size of currently living beetles. The head data predicted an unrealistically large, foot-long beetle. In contrast, the leg data predicted a beetle that nicely matches the size of the largest living beetle, Titaneus giganteus .

“This study is a first step toward understanding what controls body size in insects. It's the legs that count in the beetles studied here, but what matters for the other hundreds of thousands of beetle species and millions of insect species overall is still an open question,” said Jake Socha, Argonne biologist.

Funding for this work was supported by the National Science Foundation. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.


Story Source:

The above story is based on materials provided by DOE/Argonne National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Argonne National Laboratory. "X-ray Images Help Explain Limits To Insect Body Size." ScienceDaily. ScienceDaily, 12 August 2007. <www.sciencedaily.com/releases/2007/08/070810194908.htm>.
DOE/Argonne National Laboratory. (2007, August 12). X-ray Images Help Explain Limits To Insect Body Size. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2007/08/070810194908.htm
DOE/Argonne National Laboratory. "X-ray Images Help Explain Limits To Insect Body Size." ScienceDaily. www.sciencedaily.com/releases/2007/08/070810194908.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins