Featured Research

from universities, journals, and other organizations

Nanoscale Blasting Adjusts Resistance In Magnetic Sensors

Date:
August 17, 2007
Source:
National Institute of Standards and Technology
Summary:
A new NIST process for adjusting the resistance of semiconductor devices by blanketing a layer of the device with tiny pits may be the key to a new class of magnetic sensors, enabling new, ultra-dense data storage devices.

Cartoon illustrates new NIST technique for selectively modifying resistance of a semiconductor device layer. (Top) First layer—in this case a composite of copper and cobalt—and an insulating buffer layer of aluminum oxide is deposited. Buffer is about one nanometer thick. (Middle) Highly charged xenon +44 ions strike the buffer layer, digging nanoscale pits. (Bottom) Top conducting layer of cobalt and copper is deposited. Pits reduce the electrical resistance of the layers and may function as nanoscale GMR sensors embedded in a MTJ sensor.
Credit: NIST

A new process for adjusting the resistance of semiconductor devices by carpeting a small area of the device with tiny pits, like a yard dug up by demented terriers, may be the key to a new class of magnetic sensors, enabling new, ultra-dense data storage devices.

The technique demonstrated by researchers at the National Institute of Standards and Technology (NIST)* allows engineers to tailor the electrical resistance of individual layers in a device without changing any other part of the processing or design.

The tiny magnetic sensors in modern disk drives are a sandwich of two magnetic layers separated by a thin buffer layer. The layer closest to the disk surface is designed to switch its magnetic polarity quickly in response to the direction of the magnetic "bit" recorded on the disk under it. The sensor works by measuring the electrical resistance across the magnetic layers, which changes depending on whether the two layers have matching polarities.

As manufacturers strive to make disk storage devices smaller and more densely packed with data, the sensors need to shrink as well, but current designs are starting to hit the wall. To meet the size constraints, prototype sensors measure sensor resistance perpendicular to the thin layers, but depending on the buffer material in the sensor, two different types of sensors can be made.

Giant magneto-resistance (GMR) sensors use a low-resistance metal buffer layer and are fast, but plagued by very low, difficult to detect, signals. On the other hand, magnetic tunnel junction (MTJ) sensors use a relatively high-resistance insulating buffer that delivers a strong signal, but has a slower response time, too slow to keep up with a very high-speed, high-capacity drive.

What's needed, says NIST physicist Josh Pomeroy, is a compromise. "Our approach is to combine these at the nanometer scale. We start out with a magnetic tunnel junction--an insulating buffer--and then, by using highly charged ions, sort of blow out little craters in the buffer layer so that when we grow the rest of the sensor on top, these craters will act like little GMR sensors, while the rest will act like an MTJ sensor." The combined signal of the two effects, the researchers argue, should be superior to either alone.

The NIST team has demonstrated the first step--the controlled pockmarking of an insulating layer in a multi-layer structure to adjust its total resistance. The team uses small numbers of highly charged xenon ions that each have enormous potential energies--and can blast out surface pits without damaging the substrate. With each ion carrying more than 50 thousand electron volts of potential energy, only one impact is needed to create a pit--multiple hits in the same location are not necessary.

Controlling the number of ions provides fine control over the number of pits etched, and hence the resistance of the layer--currently demonstrated over a range of three orders of magnitude. NIST researchers now are working to incorporate these modified layers into working magnetic sensors.

The new technique alters only a single step in the fabrication process--an important consideration for future scale-up--and can be applied to any device where it's desirable to fine-tune the resistance of individual layers. NIST has a provisional patent on the work, number 60,905,125.

* J.M. Pomeroy, H. Grube, A.C. Perrella and J.D. Gillaspy. Selectable resistance-area product by dilute highly charged ion irradiation. Appl. Phys. Lett. 91, 073506 (2007).


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Nanoscale Blasting Adjusts Resistance In Magnetic Sensors." ScienceDaily. ScienceDaily, 17 August 2007. <www.sciencedaily.com/releases/2007/08/070816173259.htm>.
National Institute of Standards and Technology. (2007, August 17). Nanoscale Blasting Adjusts Resistance In Magnetic Sensors. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2007/08/070816173259.htm
National Institute of Standards and Technology. "Nanoscale Blasting Adjusts Resistance In Magnetic Sensors." ScienceDaily. www.sciencedaily.com/releases/2007/08/070816173259.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins