Featured Research

from universities, journals, and other organizations

Adult Stem Cells Lack Key Pluripotency Regulator

Date:
October 11, 2007
Source:
Whitehead Institute for Biomedical Research
Summary:
The protein Oct4, which helps to maintain embryonic stem cells, has been shown to be virtually absent in adult stem cells. These results question the findings of more than 50 studies that found Oct4 in various adult stem cells, and put claims of pluripotent adult stem cells into perspective.

Top panels: Cells of the intestinal lining of mice lacking the embryonic pluripotency regulator Oct4 stop dividing and die after radioactive exposure. Middle panels: Intestinal stem cells then become activated and begin dividing rapidly. Bottom panels: The intestinal lining is completely regenerated, with stem cells relocating to the bottom.
Credit: Chris Lengner

The protein Oct4 plays a major role in embryonic stem cells, acting as a master regulator of the genes that keep the cells in an undifferentiated state. Unsurprisingly, researchers studying adult stem cells have long suspected that Oct4 also is critical in allowing these cells to remain undifferentiated. Indeed, more than 50 studies have reported finding Oct4 activity in adult stem cells.

But those findings are misleading, according to research in the lab of Whitehead Member Rudolf Jaenisch.

In a paper published online in Cell Stem Cells on October 10, postdoctoral fellow Christopher Lengner has shown that Oct4 is not required to maintain adult stem cells in their undifferentiated state in mice, and that adult tissues function normally in the absence of Oct4. Furthermore, using three independent detection methods in several tissue types in which Oct4-positive adult stem cells had been reported, Lengner found either no trace of Oct4, or so little Oct4 as to be indistinguishable from background readings.

This means that pluripotency, the ability of stem cells to change into any kind of cell, is regulated differently in adult and embryonic stem cells.

"This is the definitive survey of Oct4," says Jaenisch, who is also an MIT professor of biology. "It puts all those claims of pluripotent adult stem cells into perspective."

Oct4 is essential in maintaining the pluripotency of embryonic stem cells, but only for a short time before the embryo implants in the uterine wall. After implantation Oct4 is turned off, and the cells differentiate into all of the 200-plus cell types in the body.

"We have convincingly shown that Oct4 has no role in adult stem cells," says Lengner.

He initially set out to determine how tissues previously shown to express Oct4 (the intestinal lining, brain, bone marrow, and hair follicle) functioned without the protein. To do so, he bred mice in which the Oct4 gene had been deleted from a given tissue type.

Next, Lengner stressed the tissue in several ways, forcing the adult stem cells within to regenerate the tissue. All regenerated normally. Lengner and his fellow researchers then tested to confirm that Oct4 had indeed been deleted from these cells. Finally, the researchers set out to validate the previously published reports claiming Oct4 was expressed in these adult stem cell types. Using highly sensitive assays that could detect Oct4 at the single cell level, they were unable to confirm the earlier reports.

"This is a cautionary tale of believing what you read in the literature," says Lengner, who suggests that earlier studies may have misapplied tricky analytical techniques or worked with cell cultures that had spent too much time in an incubator.

"We now know that adult stem cells regulate their pluripotency, or 'stemness', using different mechanisms from embryonic stem cells, and we're studying these mechanisms," he says. "Is there a common pathway that governs stemness in different adult stem cells, or does each stem cell have its own pathway" We don't yet know."

Rudolf Jaenisch's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.

Article: "Oct4 is dispensable for somatic stem cell self-renewal", Christopher J. Lengner(1), Fernando D. Camargo(1), Konrad Hochedlinger(3), G. Grant Welstead(1), Samir Zaidi(2), Sumita Gokhale(1), Hans R. Scholer(4), Alexey Tomilin(5) and Rudolf Jaenisch(1)(2)

  1. Whitehead Institute for Biomedical Research, Cambridge, MA
  2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
  3. Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Harvard Stem Cell Institute, Boston, MA
  4. Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Munster, Germany
  5. Institute of Cytology, Russian Academy of Science, Saint Petersburg, Russia.

Story Source:

The above story is based on materials provided by Whitehead Institute for Biomedical Research. Note: Materials may be edited for content and length.


Cite This Page:

Whitehead Institute for Biomedical Research. "Adult Stem Cells Lack Key Pluripotency Regulator." ScienceDaily. ScienceDaily, 11 October 2007. <www.sciencedaily.com/releases/2007/10/071010120546.htm>.
Whitehead Institute for Biomedical Research. (2007, October 11). Adult Stem Cells Lack Key Pluripotency Regulator. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2007/10/071010120546.htm
Whitehead Institute for Biomedical Research. "Adult Stem Cells Lack Key Pluripotency Regulator." ScienceDaily. www.sciencedaily.com/releases/2007/10/071010120546.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins