Featured Research

from universities, journals, and other organizations

Massive MicroRNA Scan Uncovers Leads To Treating Muscle Degeneration

Date:
October 22, 2007
Source:
Children's Hospital Boston
Summary:
An increasing number of genes have been linked to muscular dystrophy and related disorders that cause muscle weakness and wasting, but it's still largely unknown how these genes cause disease, and, more importantly, how to translate the discoveries into treatments. A wealth of new clues about how muscle function is regulated has been found by analyzing microRNAs -- tiny bits of code that govern gene expression.

Researchers have discovered the first microRNAs -- tiny bits of code that regulate gene activity -- linked to each of 10 major degenerative muscular disorders, opening doors to new treatments and a better biological understanding of these debilitating, poorly understood, often untreatable diseases. The study, to be published online by the Proceedings of the National Academy of Sciences, was led by Iris Eisenberg, PhD, of the Program in Genomics at Children's Hospital Boston. Louis Kunkel, PhD, director of the Program in Genomics and an investigator with the Howard Hughes Medical Institute, was senior investigator.

The disorders include the muscular dystrophies (Duchenne muscular dystrophy, Becker muscular dystrophy, limb girdle muscular dystrophies, Miyoshi myopathy, and fascioscapulohumeral muscular dystrophy); the congenital myopathies (nemaline myopathy); and the inflammatory myopathies (polymyositis, dermatomyositis, and inclusion body myositis). While past studies have linked them with an increasing number of genes, it's still largely unknown how these genes cause muscle weakness and wasting, and, more importantly, how to translate the discoveries into treatments.

For instance, most muscular dystrophies begin with a known mutation in a "master gene," leading to damaged or absent proteins in muscle cells. In Duchenne and Becker muscular dystrophies, the absent protein is dystrophin, as Kunkel himself discovered in 1987. Its absence causes muscle tissue to weaken and rupture, and the tissue becomes progressively nonfunctional through inflammatory attacks and other damaging events that aren't fully understood.

"The initial mutations do not explain why patients are losing their muscle so fast," says Eisenberg. "There are still many unknown genes involved in these processes, as well as in the inflammatory processes taking place in the damaged muscle tissue."

She and Kunkel believe microRNAs may help provide the missing genetic links. Their team analyzed muscle tissue from patients with each of the ten muscular disorders, discovering that 185 microRNAs are either too abundant or too scarce in wasting muscle, compared with healthy muscle.

Discovered in humans only in the past decade, microRNAs are already known to regulate major processes in the body. Therefore, Eisenberg believes microRNAs may be involved in orchestrating the tissue death, inflammatory response and other major degenerative processes in the affected muscle tissue. The researchers used bioinformatics to uncover a list of genes the microRNAs may act on, and now plan to find which microRNAs and genes actually underlie these processes.

The findings raise the possibility of slowing muscle loss by targeting the microRNAs that control these "cascades" of damaging events. This approach is more efficient than targeting individual genes.

The team also defined the abnormal microRNA "signatures" that correspond to each of the ten wasting diseases. They hope these will shed light on the genes and disease mechanisms involved in the most poorly understood and least treatable of the degenerative disorders, such as inclusion body myositis.

"At this point, it's very theoretical, but it's possible," says Eisenberg.

The study was funded by the Howard Hughes Medical Institute and also by the National Center for Research Resources, the Associazione Amici del Centro Dino Ferrari, the Telethon Project, the Eurobiobank Project, the Muscular Dystrophy Association, the National Institutes of Health, the Lee and Penny Anderson Family Foundation, and the Joshua Frase Foundation.


Story Source:

The above story is based on materials provided by Children's Hospital Boston. Note: Materials may be edited for content and length.


Cite This Page:

Children's Hospital Boston. "Massive MicroRNA Scan Uncovers Leads To Treating Muscle Degeneration." ScienceDaily. ScienceDaily, 22 October 2007. <www.sciencedaily.com/releases/2007/10/071017112223.htm>.
Children's Hospital Boston. (2007, October 22). Massive MicroRNA Scan Uncovers Leads To Treating Muscle Degeneration. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2007/10/071017112223.htm
Children's Hospital Boston. "Massive MicroRNA Scan Uncovers Leads To Treating Muscle Degeneration." ScienceDaily. www.sciencedaily.com/releases/2007/10/071017112223.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins