Featured Research

from universities, journals, and other organizations

Unexpected Activity Of Fuel Cell Catalysts Revealed

Date:
December 14, 2007
Source:
DOE/Brookhaven National Laboratory
Summary:
Researchers have unveiled important details about a class of catalysts that could help improve the performance of fuel cells. With the goal of producing "clean" hydrogen for fuel cell reactions in mind, the researchers determined why two next-generation catalysts including gold, cerium, titanium, and oxygen nanomaterials exhibit very high activity.

A scanning tunneling microscopy (STM) image taken of ceria nanoparticles on a gold surface. Size: 40 x 40 nanometers.
Credit: Image courtesy of DOE/Brookhaven National Laboratory

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have unveiled important details about a class of catalysts that could help improve the performance of fuel cells. With the goal of producing "clean" hydrogen for fuel cell reactions in mind, the researchers determined why two next-generation catalysts including gold, cerium, titanium, and oxygen nanomaterials exhibit very high activity.

Related Articles


Fuel cells combine hydrogen and oxygen without combustion to produce direct electrical power and water. They are attractive as a source of power for transportation applications because of their high energy efficiency, the potential for using a variety of fuel sources, and their zero emissions. However, a major problem facing this technology is that the hydrogen-rich materials feeding the reaction often contain carbon monoxide (CO), which is formed during hydrogen production. Within a fuel cell, CO "poisons" the expensive platinum-based catalysts that convert hydrogen into electricity, deteriorating their efficiency over time and requiring their replacement.

"Fuel cell reactions are very demanding processes that require very pure hydrogen," said Brookhaven chemist Jose Rodriguez. "You need to find some way to eliminate the impurities, and that's where the water-gas shift reaction comes into play."

The "water-gas shift" (WGS) reaction combines CO with water to produce additional hydrogen gas and carbon dioxide. With the assistance of proper catalysts, this process can convert nearly 100 percent of the CO into carbon dioxide. Rodriguez's group, which includes researchers from Brookhaven's chemistry department, the Center for Functional Nanomaterials (CFN), and the Central University of Venezuela, studied two "next-generation" WGS nanoscale catalysts: gold-cerium oxide and gold-titanium oxide.

"These nanomaterials have recently been reported as very efficient catalysts for the WGS reaction," said Brookhaven chemist Jan Hrbek. "This was a surprising finding because neither bulk gold nor bulk ceria and titania are active as catalysts."

To determine how these nanocatalysts work, the research team developed so-called "inverse model catalysts." The WGS catalysts usually consist of gold nanoparticles dispersed on a ceria or titania surface -- a small amount of the expensive metal placed on the inexpensive oxide. But to get a better look at the surface interactions, the researchers placed ceria or titania nanoparticles on a pure gold surface.

"For the first time, we established that although pure gold is inert for the WGS reaction, if you put a small amount of ceria or titanium on it, it becomes extremely active," Rodriguez said. "So although these inverse catalysts are just models, they have catalytic activity comparable to, and sometimes better than, the real deal."

Using a technique called x-ray photoelectron spectroscopy at Brookhaven's National Synchrotron Light Source, as well as scanning tunneling microscopy and calculations, the researchers discovered that the catalysts' oxides are the reason for their high activity.

"The oxides have unique properties on the nanoscale and are able to break apart water molecules, which is the most difficult part of the WGS reaction," Hrbek said. Added Brookhaven physicist Ping Liu: "After you dissociate the water, the reaction continues on to eliminate CO. But if you don't have nanosized oxide particles, none of this will work."

The researchers plan to continue their study of these catalysts at the NSLS and CFN in order to further explore the reaction mechanism and optimize its performance.

Full results will be published online in the December 14, 2007, edition of the journal Science.

Funding for this research was provided by the Office of Basic Energy Sciences, within the U.S. Department of Energy's Office of Science.


Story Source:

The above story is based on materials provided by DOE/Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Brookhaven National Laboratory. "Unexpected Activity Of Fuel Cell Catalysts Revealed." ScienceDaily. ScienceDaily, 14 December 2007. <www.sciencedaily.com/releases/2007/12/071213140335.htm>.
DOE/Brookhaven National Laboratory. (2007, December 14). Unexpected Activity Of Fuel Cell Catalysts Revealed. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2007/12/071213140335.htm
DOE/Brookhaven National Laboratory. "Unexpected Activity Of Fuel Cell Catalysts Revealed." ScienceDaily. www.sciencedaily.com/releases/2007/12/071213140335.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins