Featured Research

from universities, journals, and other organizations

Hot Springs Microbes Hold Key To Dating Sedimentary Rocks, Researchers Say

Date:
January 25, 2008
Source:
University of Illinois at Urbana-Champaign
Summary:
Scientists studying microbial communities and the growth of sedimentary rock at Mammoth Hot Springs in Yellowstone National Park have made a surprising discovery about the geological record of life and the environment. Their discovery could affect how certain sequences of sedimentary rock are dated, and how scientists might search for evidence of life on other planets.

Mammoth Hot Springs, Yellowstone National Park. Scientists studying microbial communities and the growth of sedimentary rock at Mammoth Hot Springs have made a surprising discovery about the geological record of life and the environment.
Credit: iStockphoto

Scientists studying microbial communities and the growth of sedimentary rock at Mammoth Hot Springs in Yellowstone National Park have made a surprising discovery about the geological record of life and the environment.

Their discovery could affect how certain sequences of sedimentary rock are dated, and how scientists might search for evidence of life on other planets.

"We found microbes change the rate at which calcium carbonate precipitates, and that rate controls the chemistry and shape of calcium carbonate crystals," said Bruce Fouke, a professor of geology and of molecular and cellular biology at the University of Illinois.

In fact, the precipitation rate can more than double when microbes are present, Fouke and his colleagues report in a paper accepted for publication in the Geological Society of America Bulletin.

The researchers' findings imply changes in calcium carbonate mineralization rates in the rock record may have resulted from changes in local microbial biomass concentrations throughout geologic history.

A form of sedimentary rock, calcium carbonate is the most abundant mineral precipitated on the surface of Earth, and a great recorder of life.

"As calcium carbonate is deposited, it leaves a chemical fingerprint of the animals and environment, the plants and bacteria that were there," said Fouke, who also is affiliated with the university's Institute for Genomic Biology.

The extent to which microorganisms influence calcium carbonate precipitation has been one of the most controversial issues in the field of carbonate sedimentology and geochemistry. Separating biologically precipitated calcium carbonate from non-biologically precipitated calcium carbonate is difficult.

Fouke's research team has spent 10 years quantifying the physical, chemical and biological aspects of the hot springs environment. The last step in deciphering the calcium carbonate record was performing an elaborate field experiment, which drew water from a hot springs vent and compared deposition rates with and without microbes being present.

"Angel Terrace at Mammoth Hot Springs in Yellowstone National Park is an ideal, natural laboratory because of the high precipitation rates and the abundance of microbes," Fouke said. "Calcium carbonate grows so fast -- millimeters per day -- we can examine the interaction between microorganisms and the calcium-carbonate precipitation process."

The researchers found that the rate of precipitation drops drastically -- sometimes by more than half -- when microbes are not present.

"So one of the fingerprints of calcium carbonate deposition that will tell us for sure if there were microbes present at the time it formed is the rate at which it formed," Fouke said. "And, within the environmental and ecological context of the rock being studied, we can now use chemistry to fingerprint the precipitation rate."

In a second paper, to appear in the Journal of Sedimentary Research, Fouke and colleagues show how the calcium carbonate record in a spring's primary flow path can be used to reconstruct the pH, temperature and flux of ancient hot springs environments. The researchers also show how patterns in calcium carbonate crystallization can be used to differentiate signatures of life from those caused by environmental change.

"This means we can go into the rock record, on Earth or other planets, and determine if calcium carbonate deposits were associated with microbial life," Fouke said.

The work was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Hot Springs Microbes Hold Key To Dating Sedimentary Rocks, Researchers Say." ScienceDaily. ScienceDaily, 25 January 2008. <www.sciencedaily.com/releases/2008/01/080122154606.htm>.
University of Illinois at Urbana-Champaign. (2008, January 25). Hot Springs Microbes Hold Key To Dating Sedimentary Rocks, Researchers Say. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2008/01/080122154606.htm
University of Illinois at Urbana-Champaign. "Hot Springs Microbes Hold Key To Dating Sedimentary Rocks, Researchers Say." ScienceDaily. www.sciencedaily.com/releases/2008/01/080122154606.htm (accessed July 28, 2014).

Share This




More Earth & Climate News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Phoenix Thunderstorm Creates Giant Wall of Dust

Phoenix Thunderstorm Creates Giant Wall of Dust

Reuters - US Online Video (July 26, 2014) A giant wall of dust slowly moves north over the Phoenix area after a summer monsoon thunderstorm. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins