Featured Research

from universities, journals, and other organizations

New Model Of A Nuclear Pore Complex Is Based On Crystal Structure Of Its Key Component

Date:
January 30, 2008
Source:
Rockefeller University
Summary:
Everything that goes in and out of a cell's nucleus must pass through one of its nuclear pores. In the second nuclear pore study to come out of Rockefeller University in as many months, researchers have determined the crystal structure of one of the pore's main components and used it to propose an overall structure for the circular pore, rings of alternating protein complexes that fit together like two sides of a zipper.

The crystal structure described by Hoelz, Blobel and their research team consists of a slightly bent rod made of just two different molecules: one called Sec13 (orange and yellow) and one called Nup145C (blue and green). The two molecules appear in different configurations and fit together much like stacked LEGOs.

Everything that goes in and out of a cell’s nucleus must pass through one of its nuclear pores. In the second nuclear pore study to come out of Rockefeller University in as many months, researchers have determined the crystal structure of one of the pore’s main components and used it to propose an overall structure for the circular pore, rings of alternating protein complexes that fit together like two sides of a zipper.

Related Articles


In research published in the journal Cell, a team of scientists from Gόnter Blobel’s Laboratory of Cell Biology describes how they crystallized a central component of the nuclear pore that provided a tantalizing glimpse of the pore’s structure in its entirety. Building on this component, the team has proposed a new molecular model of the nuclear pore.

Visualizing the nuclear pore complex is a particularly tricky endeavor: It’s such a large, pliant structure that traditional methods just don’t work. So researchers have had to get creative. Just a month ago, two Rockefeller professors published the first complete model of a nuclear pore complex created through a combination of biochemical, spectrometry and computer-modeling techniques. Blobel’s team — Kuo-Chiang Hsia, Peter Stavropoulos, Blobel and Andrι Hoelz — used an approach that was quite different: x-ray crystallography to visualize a core piece of the pore and determine how it bound to a neighboring complex, then puzzle-solving to deduce how the rest of the structure fit together. In the end, the researchers’ results differed, too. But the new findings were consistent with research published by the Blobel lab last spring, which proposed a ring-like arrangement of sliding subunits.

Using the high-resolution structures they’ve uncovered, Hoelz says, the lab is working to build a model of the nuclear pore complex that’s constructed piece by piece. He and Blobel found that their complex — called Sec13-Nup145C — crystallized into two distinct shapes that came together to form a bent rod. From there, they devised a molecular architecture for the pore that consists of eight of these rods, placed vertically, linking four stacked rings of alternating protein complexes in a pattern akin to houndstooth. Hoelz, a research associate, and Blobel, John D. Rockefeller Jr. Professor and a Howard Hughes Medical Institute investigator, propose that this structure may represent one of the four concentric cylinders that, according to their previous research, may make up the core of the nuclear pore. “Clearly more work will be required to test these two proposals,” Blobel says.

The nuclear pore is the center of so much attention because everything that goes in and out of the nucleus has to pass through. But apart from a few binding sites, “the structure is essentially a black box,” Hoelz says. “And if we don’t know how it looks and how it is constructed in atomic detail, then we have no way to figure out how this large transport machine works.”

Journal reference: Cell 131(7): 1313–1326 (December 28, 2007)


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "New Model Of A Nuclear Pore Complex Is Based On Crystal Structure Of Its Key Component." ScienceDaily. ScienceDaily, 30 January 2008. <www.sciencedaily.com/releases/2008/01/080124142011.htm>.
Rockefeller University. (2008, January 30). New Model Of A Nuclear Pore Complex Is Based On Crystal Structure Of Its Key Component. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2008/01/080124142011.htm
Rockefeller University. "New Model Of A Nuclear Pore Complex Is Based On Crystal Structure Of Its Key Component." ScienceDaily. www.sciencedaily.com/releases/2008/01/080124142011.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins