Featured Research

from universities, journals, and other organizations

Natural Gas Formation By Bacteria Linked To Climate Change And Renewable Energy

Date:
January 28, 2008
Source:
University of Massachusetts Amherst
Summary:
Natural gas reservoirs in Michigan's Antrim Shale are providing new information about global warming and the Earth's climate history. The new study is also good news for energy companies hoping to make natural gas a renewable resource. Scientists found that carbon-hungry bacteria trapped deep in the rock beneath ice sheets produced the gas during the ice age, as glaciers advanced and retreated over Michigan.

Natural gas reservoirs in Michigan’s Antrim Shale are providing new information about global warming and the Earth’s climate history, according to a recent study by Steven Petsch, a geoscientist at the University of Massachusetts Amherst. The study is also good news for energy companies hoping to make natural gas a renewable resource.

Petsch found that carbon-hungry bacteria trapped deep in the rock beneath ice sheets produced the gas during the ice age, as glaciers advanced and retreated over Michigan. “Bacteria digested the carbon in the rocks and made large amounts of natural gas in a relatively short time, tens of thousands of years instead of millions,” says Petsch. “This suggests that it may be possible to seed carbon-rich environments with bacteria to create natural gas reservoirs.”

The study also helps explain high levels of methane in the atmosphere that occurred between ice ages, a trend recorded in ice cores taken from Greenland and Antarctica. “When the ice sheets retreated, it was like uncapping a soda bottle,” says Petsch. “Natural gas, which is mostly methane, was released from the shale into the atmosphere.”

This research can be used in current climate change models to account for the effects of melting glaciers,” says Petsch. “Climate scientists haven’t focused on the role that geologic sources of methane play in global warming.”

Petsch used the chemistry of water and rock samples from the shale, which sits like a bowl beneath northern Michigan, to recreate the past. For most of its history, the Antrim Shale contained water that was too salty to allow bacteria to grow. But areas rich in natural gas showed an influx of fresh water that was chemically different from modern rainfall. “This water, which is similar to meltwater from glaciers formed during the ice age, was injected into the rock by the pressure of the overlying ice sheets,” says Petsch.

Glacial meltwater diluted the salt water already present in the shale, allowing the bacteria to thrive and quickly digest available carbon. The natural gas they produced was chemically similar to the surrounding water and had a unique carbon chemistry that proved its bacterial origin. Petsch calculated that trillions of cubic feet of natural gas were eventually stored in the shale under pressure.

At least 75 percent of the gas was released into the atmosphere as the ice sheets retreated, adding to methane from other sources such as tropical wetlands. While methane from the Antrim Shale accounts for a small fraction of the rise in methane observed between ice ages, there are many natural gas deposits that were formed in the same geologic setting. The cumulative effect may have caused large emissions of methane to the atmosphere.

Klaus Nόsslein of the UMass Amherst microbiology department analyzed DNA from water samples and identified bacteria capable of breaking down hydrocarbons in the rock. Other microbes were present that produced methane from the break-down products. Both of these groups can live without oxygen. Identifying and studying the needs of these microbes, which are capable of living deep in the Earth, is an important step in creating new natural gas reserves.

Results were published in the February 2008 issue of Geology. Additional members of the team include post-doctoral researcher Michael Formolo and undergraduate student Jeffrey Salacup of the University of Massachusetts Amherst and Anna Martini, a professor of geology at Amherst College. The research was funded by the National Science Foundation and the Research Partnership to Secure Energy for America.


Story Source:

The above story is based on materials provided by University of Massachusetts Amherst. Note: Materials may be edited for content and length.


Cite This Page:

University of Massachusetts Amherst. "Natural Gas Formation By Bacteria Linked To Climate Change And Renewable Energy." ScienceDaily. ScienceDaily, 28 January 2008. <www.sciencedaily.com/releases/2008/01/080126093649.htm>.
University of Massachusetts Amherst. (2008, January 28). Natural Gas Formation By Bacteria Linked To Climate Change And Renewable Energy. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/01/080126093649.htm
University of Massachusetts Amherst. "Natural Gas Formation By Bacteria Linked To Climate Change And Renewable Energy." ScienceDaily. www.sciencedaily.com/releases/2008/01/080126093649.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) — Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) — Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins