Featured Research

from universities, journals, and other organizations

El Nino At Play As Source Of More Intense Regional US Wintertime Storms

Date:
January 31, 2008
Source:
NASA/Goddard Space Flight Center
Summary:
The next time you have to raise your umbrella against torrents of cold winter rain, you may have a remote weather phenomenon to thank that many may know by name as El Nino, but may not well understand.

Remnants of a winter storm, characteristic of those sourced from an El Niño weather anomaly, can be seen pushing eastward over the Atlantic Ocean due east of North Carolina in this true-color image captured on Jan. 4, 2002, by the SeaWiFS satellite.
Credit: NASA/Goddard Space Flight Center; ORBIMAGE

The next time you have to raise your umbrella against torrents of cold winter rain, you may have a remote weather phenomenon to thank that many may know by name as El Nino, but may not well understand.

Related Articles


Researchers now believe that some of the most intense winter storm activity over parts of the United States may be set in motion from changes in the surface waters of far-flung parts of the Pacific Ocean. Siegfried Schubert of NASA's Goddard Space Flight Center in Greenbelt, Md., and his colleagues studied the impact that El Niño-Southern Oscillation (ENSO) events have on the most intense U.S. winter storms.

An ENSO episode typically consists of an El Niño phase followed by a La Niña phase. During the El Niño phase, eastern Pacific temperatures near the equator are warmer than normal, while during the La Niña phase the same waters are colder than normal. These fluctuations in Pacific Ocean temperatures are accompanied with fluctuations in air pressure known as the Southern Oscillation.

ENSO is a coupled ocean-atmosphere effect that has a sweeping influence on weather around the world. Scientists found that during El Niño winters, the position of the jet stream is altered from its normal position and, in the U.S., storm activity tends to be more intense in several regions: the West Coast, Gulf States and the Southeast. They estimate, for example, that certain particularly intense Gulf Coast storms that occur, on average, only once every 20 years would occur in half that time under long-lasting El Niño conditions. In contrast, under long-lasting La Nina conditions, the same storms would occur on average only about once in 30 years. A related study was published this month in the American Meteorological Society's Journal of Climate.

The scientists examined daily records of snow and rainfall events over 49 U.S. winters, from 1949-1997, together with results from computer model simulations. According to Schubert, the distant temperature fluctuations in Pacific Ocean surface waters near the equator are likely responsible for many of the year-to-year changes in the occurrence of the most intense wintertime storms.

"By studying the history of individual storms, we've made connections between changes in precipitation in the U.S. and ENSO events in the Pacific," said Schubert, a meteorologist and lead author of the study. "We can say that there is an increase in the probability that a severe winter storm will affect regions of the U.S. if there is an El Niño event."

"Looking at the link between large-scale changes in climate and severe weather systems is an emerging area in climate research that affects people and resources all over the world," said Schubert. "Researchers in the past have tended to look at changes in local rainfall and snow statistics and not make the connections to related changes in the broader storm systems and the links to far away sources. We found that our models are now able to mimic the changes in the storms that occurred over the last half century. That can help us understand the reasons for those changes, as well as improve our estimates of the likelihood that stronger storms will occur."

El Niño events, which tend to climax during northern hemisphere winters, are a prime example of how the ocean and atmosphere combine to affect climate and weather, according to Schubert. During an El Niño, warm waters from the western Pacific move into the central and eastern equatorial Pacific, spurred by changes in the surface wind and in the ocean currents. The higher sea surface temperatures in the eastern equatorial Pacific increase rainfall there, which alters the positions of the jet streams in both the northern and southern hemispheres. That in turn affects weather in the U.S. and around the world.

Scientists have known about El Niño weather fluctuations over a large portion of the world since the early 1950s. They occur in cycles every three to seven years, changing rain patterns that can trigger flooding as well as drought.

Schubert cautions against directly linking a particular heavy storm event to El Niño with absolute certainty. "This study is really about the causes for the changes in probability that you'll have stronger storms, not about the causes of individual storms," he said. For that matter, Schubert also discourages linking a particularly intense storm to global warming with complete certainty.

"Our study shows that when tropical ocean surface temperature data is factored in, our models now allow us to estimate the likelihood of intense winter storms much better than we can from the limited records of atmospheric observations alone, especially when studying the most intense weather events such as those associated with ENSO," said Schubert. "But, improved predictions of the probability of intense U.S. winter storms will first require that we produce more reliable ENSO forecasts." NASA's Global Modeling and Assimilation Office is, in fact, doing just that by developing both an improved coupled ocean-atmosphere-land model and comprehensive data, combining space-based and in situ measurements of the atmosphere, ocean and land, necessary to improve short term climate predictions.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "El Nino At Play As Source Of More Intense Regional US Wintertime Storms." ScienceDaily. ScienceDaily, 31 January 2008. <www.sciencedaily.com/releases/2008/01/080128113104.htm>.
NASA/Goddard Space Flight Center. (2008, January 31). El Nino At Play As Source Of More Intense Regional US Wintertime Storms. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/01/080128113104.htm
NASA/Goddard Space Flight Center. "El Nino At Play As Source Of More Intense Regional US Wintertime Storms." ScienceDaily. www.sciencedaily.com/releases/2008/01/080128113104.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) — EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) — A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) — Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins