Featured Research

from universities, journals, and other organizations

Gene Discovery Made Easier With Powerful New Networking Technique

Date:
January 29, 2008
Source:
University of Texas at Austin
Summary:
The identification of disease-causing genes will be much easier and faster using a powerful new gene-networking model. Scientists used the gene network technique to identify new genes that regulate life span and are involved in tumor development in the nematode worm. The human genome has been sequenced, but very little is known about what more than half of about 20,000 genes do. Researchers hope to extend the new technique to identifying genes for disease and other disorders in humans.

The identification of disease-causing genes will be much easier and faster using a powerful new gene-networking model developed by researchers at The University of Texas at Austin.

Related Articles


Edward Marcotte and his colleague, postdoctoral researcher Insuk Lee, used the gene network technique to identify new genes that regulate life span and are involved in tumor development in the nematode worm.

In collaboration with Andrew Fraser's group at The Wellcome Trust Sanger Institute, the researchers manipulated the newly found genes and were able to extend the lives of the worms by 55 percent and reverse the onset of tumors.

Marcotte hopes to extend the technique to identifying genes for disease and other disorders in humans. The human genome has been sequenced, but very little is known about what more than half of about 20,000 genes do.

"This is a big step forward in the rational discovery of disease genes," says Marcotte, a professor in the Institute for Cellular and Molecular Biology. "We can use this gene modeling technique to predict the function of new genes and then run experiments to confirm the findings.

"The process could greatly improve our ability to pinpoint specific genes involved in disease and aid in the development of drugs."

Gene networks are models of the connections between all of the genes within an organism, and Marcotte uses them like an online social network. He learns what new genes do by the genes' connections to others in the network, much like people use online social networking systems to connect with friends and others with similar interests.

"You can think of it like six degrees of separation or a Facebook.com for genes," says Marcotte. "If you know of a few genes and what they do, their 'friends' probably do something similar, and we can find these through the network."

To build the worm gene network, Lee, a postdoctoral researcher in Marcotte's group, synthesized data from about 20 million experiments from around the world. A visual representation of the network--which has the appeal of a work of modern art--is a complex web of lines interconnecting the worm's 16,000 genes.

In one set of studies, the researchers looked for genes that cause tumors in the worms. The tumors are a model for human eye cancer (retinoblastoma) and appear as growths along the length of the worms' bodies.

By searching the network, they found about 170 new genes that could have been involved in the development of tumors.

Then Marcotte's colleagues at the Wellcome Trust Sanger Institute in Cambridge in the United Kingdom tested the function of the new genes by inactivating them with a technique known as RNAi. The technique mimics the action of a potential drug by knocking out the function of individual genes.

They found that inactivating 16 of the 170 genes reversed tumors in the worms.

In similar studies, the researchers identified genes that regulate life span in the worms and manipulated the genes to extend the worms' lives by 55 percent. "This sets the stage for making equivalent networks for the mouse and human genome," Marcotte says. "Then we hope we can discover genes that are causal for disease conditions in humans."

Marcotte's research was published January 27 online in Nature Genetics.

Research contributors from the Wellcome Trust included Ben Lehner, Catriona Crombie, Wendy Wong and Andrew Fraser.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin. "Gene Discovery Made Easier With Powerful New Networking Technique." ScienceDaily. ScienceDaily, 29 January 2008. <www.sciencedaily.com/releases/2008/01/080129125347.htm>.
University of Texas at Austin. (2008, January 29). Gene Discovery Made Easier With Powerful New Networking Technique. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/01/080129125347.htm
University of Texas at Austin. "Gene Discovery Made Easier With Powerful New Networking Technique." ScienceDaily. www.sciencedaily.com/releases/2008/01/080129125347.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins