Featured Research

from universities, journals, and other organizations

Breakdown Of Kidney's Ability To Clean Its Own Filters Likely Causes Disease

Date:
February 3, 2008
Source:
Washington University School of Medicine
Summary:
The kidney actively cleans its most selective filter to keep it from clogging with blood proteins, scientists reveal in a new study. Researchers showed that breakdown of this self-cleaning feature can make kidneys more vulnerable to dysfunction and disease.

With a key protein disabled, a pair of kidney filtering units can't keep antibodies, which are red in this image, from building up in the filter. Scientists now think inability to keep these filters clear may be an important contributor to kidney damage.
Credit: Image courtesy of Washington University School of Medicine

The kidney actively cleans its most selective filter to keep it from clogging with blood proteins, scientists from Washington University School of Medicine in St. Louis reveal in a new study.

Related Articles


Researchers showed that breakdown of this self-cleaning feature can make kidneys more vulnerable to dysfunction and disease.

"We speculate that defects of this clearance mechanism can leave things on the filter that can damage it," says senior author Andrey Shaw, M.D., Emil R. Unanue Professor of Immunobiology in Pathology and Immunology. "This could include autoimmune antibodies that mistakenly target the body's own tissues like those that occur in the disease lupus."

Despite extensive knowledge of the structure of the kidney, several scientific controversies linger over how the organ does its complicated and essential job of filtering wastes from the blood for disposal without simultaneously discarding too much water or key blood proteins in the urine. Understanding how these tricky tasks are accomplished is essential to developing new treatments for kidney disease and renal failure, which are among the top ten causes of death in the United States.

Like many mechanical filtering systems, the kidney passes the blood through a series of progressively finer screens. After passing through a structure known as the glomerular basement membrane (GBM), fluid and serum proteins must finally pass through the most selective filter of the kidney, which is comprised of specialized epithelial cells called podocytes. These cells form a web-like barrier to the passage of large serum proteins into the urine.

"The kidney screens 150 to 200 liters of blood daily, and we were curious as to how the kidney keeps the filter from clogging up," says first author Shreeram Akilesh, an M.D./Ph.D. student. "The two most common blood serum and plasma proteins are albumin, which helps regulate blood volume and convey a number of different substances around the body, and immunoglobin G (IgG), a type of immune system antibody. Because they're so common, we figured they would be among the most likely to get stuck on the filter, and set out to look for proteins that help clear them."

Researchers looked for proteins made in podocytes that could bind to albumin and IgG, reasoning that such proteins likely provide the "handles" the podocytes need to grab proteins and clear them from the filter.

A protein known as FcRn was high on the list of likely suspects. Akilesh had studied FcRn previously in the laboratory of coauthor Derry C. Roopenian, Ph.D., professor at the Jackson Laboratory in Bar Harbor, Maine. Prior research there and in other laboratories had revealed that FcRn binds to both IgG and albumin and is present in human podocytes.

After confirming that the FcRn protein also is made in mouse podocytes, scientists then asked if FcRn was responsible for clearing IgG antibody from the filter. To do this, they measured the retention of a radioactive tracer in the kidneys of normal mice and in mice where the gene for FcRn had been disabled. Mice lacking FcRn had difficulty clearing antibody from the kidney.

When researchers studied the mice lacking FcRn for longer periods of time, they saw evidence that antibodies were accumulating in the kidney.

In another experiment, researchers gave the mice injections of large quantities of protein to saturate the clearance system. They followed those injections with what would normally have been a harmlessly small dose of an antibody potentially toxic to the kidney. The mice developed kidney damage as a result. Researchers believe this was because they couldn't clear the toxic antibody from the GBM quickly enough.

"This is the first clear demonstration that the filter system in the kidney isn't just a passive mechanical filter, it's actually involved in its own maintenance," says Akilesh. "It also provides us with a nice mechanism for explaining how the normal function of this filter may be breaking down in ways that leads to kidney disease and damage."

To follow up, Shaw plans to look for other podocyte proteins involved in filter clearance.

Journal reference: Akilesh S, Huber TB, Wu H, Wang G, Hartleben B, Kopp JB, Miner JH, Roopenian DC, Unanue ER, Shaw AS. Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proceedings of the National Academy of the Sciences, January 22, 2008.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School of Medicine. "Breakdown Of Kidney's Ability To Clean Its Own Filters Likely Causes Disease." ScienceDaily. ScienceDaily, 3 February 2008. <www.sciencedaily.com/releases/2008/01/080129125401.htm>.
Washington University School of Medicine. (2008, February 3). Breakdown Of Kidney's Ability To Clean Its Own Filters Likely Causes Disease. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2008/01/080129125401.htm
Washington University School of Medicine. "Breakdown Of Kidney's Ability To Clean Its Own Filters Likely Causes Disease." ScienceDaily. www.sciencedaily.com/releases/2008/01/080129125401.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins