Featured Research

from universities, journals, and other organizations

Offsetting Global Warming By Trapping Carbon Dioxide On The Bottom Of The Ocean

Date:
February 19, 2008
Source:
Natural Sciences and Engineering Research Council
Summary:
Imagine a gigantic, inflatable, sausage-like bag capable of storing 160 million tons of carbon dioxide -- the equivalent of 2.2 days of current global emissions. Now try to picture that container, measuring up to 100 meters in radius and several kilometers long, resting benignly on the seabed more than 3 kilometers below the ocean's surface. This may offer a viable solution because vast flat plains cover huge areas of the deep oceans. These abyssal plains have little life.

Imagine a gigantic, inflatable, sausage-like bag capable of storing 160 million tonnes of CO2 -- the equivalent of 2.2 days of current global emissions. Now try to picture that container, measuring up to 100 metres in radius and several kilometres long, resting benignly on the seabed more than 3 kilometres below the ocean's surface.

At first blush, this might appear like science fiction, but it's an idea that gets serious attention from Dr. David Keith, one of Canada's foremost experts on carbon capture and sequestration. Keith will talk on the subject at the 2008 Annual Conference of the American Association for the Advancement of Science in Boston at a session entitled Ocean Iron Fertilization and Carbon Sequestration: Can the Oceans Save the Planet?

"There are a lot of gee-whiz ideas for dealing with global warming that are really silly," remarks Keith, an NSERC grantee and director of the Energy and Environmental Systems Group at University of Calgary-based Institute for Sustainable Energy, Environment and Economy. "At first glance this idea looks nutty, but as one looks closer it seems that it might technically feasible with current-day technology." But, adds Keith, who holds the Canada Research Chair in Energy and the Environment, "it's early days and there is not yet any serious design study for the concept."

The original idea of ocean storage was conceived several years ago by Dr. Michael Pilson, a chemical oceanographer at the University of Rhode Island, but it really took off last year when Keith confirmed its feasibility with Dr. Andrew Palmer, a world-renowned ocean engineer at Cambridge University. Keith, Palmer and another scientist at Argonne National Laboratory later advanced the concept through a technical paper prepared for the 26th International Conference on Offshore Mechanics and Arctic Engineering in June 2007.

Keith sees this solution as a potentially useful complement to CO2 storage in geological formations, particularly for CO2 emanating from sources near deep oceans.

He believes it may offer a viable solution because vast flat plains cover huge areas of the deep oceans. These abyssal plains have little life and are benign environments. "If you stay away from the steep slopes from the continental shelves, they are a very quiet environment."

For CO2 to be stored there, the gas must be captured from power and industrial point sources, compressed to liquid, and transported via pipelines that extend well beyond the ocean's continental shelves. When the liquid CO2 is pumped into the deep ocean, the intense pressure and cold temperatures make it negatively buoyant.

"This negative buoyancy is the key," explains Keith. "It means the CO2 wants to leak downwards rather than moving up to the biosphere."

The use of containment is necessary because CO2 will tend to dissolve in the ocean, which could adversely impact marine ecosystems. Fortunately, says Keith, the cost of containment is quite minimal with this solution. He and his colleagues calculate that the bags can be constructed of existing polymers for less than four cents per tonne of carbon.

The real costs lie in the capture of CO2 and its transport to the deep ocean. "If we can drive those down," he notes, "then ocean storage might be an important option for reducing CO2 emissions."


Story Source:

The above story is based on materials provided by Natural Sciences and Engineering Research Council. Note: Materials may be edited for content and length.


Cite This Page:

Natural Sciences and Engineering Research Council. "Offsetting Global Warming By Trapping Carbon Dioxide On The Bottom Of The Ocean." ScienceDaily. ScienceDaily, 19 February 2008. <www.sciencedaily.com/releases/2008/02/080218134635.htm>.
Natural Sciences and Engineering Research Council. (2008, February 19). Offsetting Global Warming By Trapping Carbon Dioxide On The Bottom Of The Ocean. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2008/02/080218134635.htm
Natural Sciences and Engineering Research Council. "Offsetting Global Warming By Trapping Carbon Dioxide On The Bottom Of The Ocean." ScienceDaily. www.sciencedaily.com/releases/2008/02/080218134635.htm (accessed September 3, 2014).

Share This



More Earth & Climate News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands of Fish Dead in Mexico Lake

Raw: Thousands of Fish Dead in Mexico Lake

AP (Sep. 2, 2014) — Over 53 tons of rotting fish have been removed from Lake Cajititlan in western Jalisco state. Authorities say that the thousands of fish did not die of natural causes. (Sep. 2) Video provided by AP
Powered by NewsLook.com
Raw: Iceland Volcano Spewing Smoke

Raw: Iceland Volcano Spewing Smoke

AP (Sep. 2, 2014) — The alert warning for the area surrounding Iceland's Bardarbunga volcano was kept at orange on Tuesday, indicating increased unrest with greater potential for an eruption. Smoke is spewing from the volcano, and lava is spouting nearby. (Sept. 2) Video provided by AP
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Halliburton Reaches $1B Gulf Spill Settlement

Halliburton Reaches $1B Gulf Spill Settlement

AP (Sep. 2, 2014) — Halliburton's agreement to pay more than $1 billion to settle numerous claims involving the 2010 BP oil spill could be a way to diminish years of costly litigation. A federal judge still has to approve the settlement. (Sept. 2) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins