Featured Research

from universities, journals, and other organizations

Optical 'Frequency Comb' Can Detect The Breath Of Disease

Date:
February 22, 2008
Source:
National Institute of Standards and Technology
Summary:
Exhale on a cold winter day and you will see the water vapor coming out of your mouth. Light up your breath with a Nobel-Prize-related tool, and you could potentially detect trace amounts of over 1,000 compounds, some of which provide early warning signs of disease. A new optical technique can simultaneously identify tiny amounts of a broad range of molecules in the breath, potentially enabling a fast, low-cost screening tool for disease.

Schematic of a breath analyzer that uses “frequency combs,” an optical tool that led to a recent Nobel Prize in Physics for JILA fellow Jan Hall.
Credit: Univ. of Colorado/JILA

Exhale on a cold winter day and you will see the water vapor coming out of your mouth. Light up your breath with a Nobel-Prize-related tool, and you could potentially detect trace amounts of over 1,000 compounds, some of which provide early warning signs of disease. In a new paper,* a team led by Jun Ye, a physicist at JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder, has demonstrated an optical technique for simultaneously identifying tiny amounts of a broad range of molecules in the breath, potentially enabling a fast, low-cost screening tool for disease.

"It is exciting to imagine the potential of analyzing all major biomarkers in one's breath at once," says Ye. "For example, nitric oxide can indicate asthma, but it also appears in breath with many other lung diseases, including chronic obstructive pulmonary disease, cystic fibrosis and bronchiectasis. However, if we simultaneously monitor nitric oxide, carbon monoxide, hydro-peroxide, nitrites, nitrates, pentane, and ethane, all important biomarkers for asthma, we can be much more certain for a definitive diagnosis of this important disease."

Existing methods for detecting trace amounts of molecules from the breath are either bulky, slow, limited to specific molecules, unable to distinguish very well between multiple compounds or inaccurate at measuring their concentrations. In this new approach, the researchers analyze human breath with "frequency combs," an optical tool cited in the 2005 Nobel Prize in Physics shared by JILA fellow Jan Hall. Frequency combs are generated by a laser specially designed to produce a series of very short, equally spaced pulses of light. Each pulse may be only a few millionth billionths of a second long. The laser generates light as a series of very narrow frequency peaks equally spaced, like the teeth of a comb, across a broad spectrum.

In the experiment, student volunteers exhaled breath that entered an optical cavity where it was "combed" by the light pulses. By detecting which colors of light were absorbed and in what amounts--essentially looking for light absorbed near the "teeth" of the comb-- the researchers could detect specific molecules and their concentrations. For example, a student smoker who participated in the experiment had a level of carbon monoxide that was five times greater than a nonsmoker in the experiment.

The optical comb approach allows the researchers to simultaneously analyze a very broad spectrum, covering many possible molecular compounds, with high precision, frequency resolution and sensitivity. The technique is in early phases, and would require clinical trials before it could become available at a doctor's office, but it could lead to one of the first widespread applications of frequency combs.

* M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner and J. Ye. Human breath analysis via cavity enhanced optical frequency comb spectroscopy. Optics Express, Vol. 16, No. 4, February 18, pp. 2387-2397.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Optical 'Frequency Comb' Can Detect The Breath Of Disease." ScienceDaily. ScienceDaily, 22 February 2008. <www.sciencedaily.com/releases/2008/02/080219203520.htm>.
National Institute of Standards and Technology. (2008, February 22). Optical 'Frequency Comb' Can Detect The Breath Of Disease. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2008/02/080219203520.htm
National Institute of Standards and Technology. "Optical 'Frequency Comb' Can Detect The Breath Of Disease." ScienceDaily. www.sciencedaily.com/releases/2008/02/080219203520.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins