Featured Research

from universities, journals, and other organizations

Optical 'Frequency Comb' Can Detect The Breath Of Disease

Date:
February 22, 2008
Source:
National Institute of Standards and Technology
Summary:
Exhale on a cold winter day and you will see the water vapor coming out of your mouth. Light up your breath with a Nobel-Prize-related tool, and you could potentially detect trace amounts of over 1,000 compounds, some of which provide early warning signs of disease. A new optical technique can simultaneously identify tiny amounts of a broad range of molecules in the breath, potentially enabling a fast, low-cost screening tool for disease.

Schematic of a breath analyzer that uses “frequency combs,” an optical tool that led to a recent Nobel Prize in Physics for JILA fellow Jan Hall.
Credit: Univ. of Colorado/JILA

Exhale on a cold winter day and you will see the water vapor coming out of your mouth. Light up your breath with a Nobel-Prize-related tool, and you could potentially detect trace amounts of over 1,000 compounds, some of which provide early warning signs of disease. In a new paper,* a team led by Jun Ye, a physicist at JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder, has demonstrated an optical technique for simultaneously identifying tiny amounts of a broad range of molecules in the breath, potentially enabling a fast, low-cost screening tool for disease.

Related Articles


"It is exciting to imagine the potential of analyzing all major biomarkers in one's breath at once," says Ye. "For example, nitric oxide can indicate asthma, but it also appears in breath with many other lung diseases, including chronic obstructive pulmonary disease, cystic fibrosis and bronchiectasis. However, if we simultaneously monitor nitric oxide, carbon monoxide, hydro-peroxide, nitrites, nitrates, pentane, and ethane, all important biomarkers for asthma, we can be much more certain for a definitive diagnosis of this important disease."

Existing methods for detecting trace amounts of molecules from the breath are either bulky, slow, limited to specific molecules, unable to distinguish very well between multiple compounds or inaccurate at measuring their concentrations. In this new approach, the researchers analyze human breath with "frequency combs," an optical tool cited in the 2005 Nobel Prize in Physics shared by JILA fellow Jan Hall. Frequency combs are generated by a laser specially designed to produce a series of very short, equally spaced pulses of light. Each pulse may be only a few millionth billionths of a second long. The laser generates light as a series of very narrow frequency peaks equally spaced, like the teeth of a comb, across a broad spectrum.

In the experiment, student volunteers exhaled breath that entered an optical cavity where it was "combed" by the light pulses. By detecting which colors of light were absorbed and in what amounts--essentially looking for light absorbed near the "teeth" of the comb-- the researchers could detect specific molecules and their concentrations. For example, a student smoker who participated in the experiment had a level of carbon monoxide that was five times greater than a nonsmoker in the experiment.

The optical comb approach allows the researchers to simultaneously analyze a very broad spectrum, covering many possible molecular compounds, with high precision, frequency resolution and sensitivity. The technique is in early phases, and would require clinical trials before it could become available at a doctor's office, but it could lead to one of the first widespread applications of frequency combs.

* M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner and J. Ye. Human breath analysis via cavity enhanced optical frequency comb spectroscopy. Optics Express, Vol. 16, No. 4, February 18, pp. 2387-2397.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Optical 'Frequency Comb' Can Detect The Breath Of Disease." ScienceDaily. ScienceDaily, 22 February 2008. <www.sciencedaily.com/releases/2008/02/080219203520.htm>.
National Institute of Standards and Technology. (2008, February 22). Optical 'Frequency Comb' Can Detect The Breath Of Disease. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/02/080219203520.htm
National Institute of Standards and Technology. "Optical 'Frequency Comb' Can Detect The Breath Of Disease." ScienceDaily. www.sciencedaily.com/releases/2008/02/080219203520.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins