Featured Research

from universities, journals, and other organizations

Catalysis Discovery Takes Aim At NOx Emissions

Date:
February 26, 2008
Source:
DOE/Pacific Northwest National Laboratory
Summary:
A discovery in molecular chemistry may help remove a barrier to widespread use of diesel and other fuel-efficient "lean burn" vehicle engines. Researchers have recorded the first observations of how certain catalyst materials used in emission control devices are constructed.

Scientists looking for better vehicle emission treatments have discovered how potential catalyst materials are constructed. Researchers found that, in the presence of water, aluminum ions (gray) on the surface of alumina bond to six oxygen ions (red). Heating removes the water and leaves some aluminum ions with only five oxygen ions. This creates a bonding site for the NOx-removing catalyst barium oxide.
Credit: Image courtesy of DOE/Pacific Northwest National Laboratory

A discovery in molecular chemistry may help remove a barrier to widespread use of diesel and other fuel-efficient "lean burn" vehicle engines. Researchers at the Department of Energy's Pacific Northwest National Laboratory have recorded the first observations of how certain catalyst materials used in emission control devices are constructed.

The PNNL team observed how barium oxide attaches itself to the surface of gamma-alumina. Barium oxide is a compound that absorbs toxic nitrogen oxide, commonly referred to as NOx, from tail-pipe emissions. Gamma alumina is a form of aluminum oxide that is used as a support for catalyst materials, such as barium oxide, that are the active ingredients in exhaust systems.

"The discovery is encouraging because understanding catalysts in molecular and atomic detail can directly identify new ways to improve them," said PNNL researcher Janos Szanyi. The manner in which barium oxide anchors onto alumina suggests the exact site where catalytic materials begin to form - and where they can be available to absorb NOx emissions.

Lean burn engines deliver up to 35 percent better fuel economy because they mix more air with gasoline than standard internal combustion engines. But the more efficient engines can't meet strict emissions standards because current after-treatment devices don't effectively reduce NOx emissions. New catalysts are essential before the economic and environmental benefits of lean burn engines can be realized.

Alumina is a common and relatively inexpensive catalyst support material. Its surface structure, formation and thermal stability have been the subjects of much research, but the alumina particles are too small and poorly crystalline for traditional surface analysis. Researchers used the world's first 900-MHz nuclear magnetic resonance spectrometer to reveal the anchoring behavior. The instrument is located at the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility at PNNL.

Scientists know that the aluminum ions in alumina coordinate, or bond, to either four or six oxygen ions. When water is present, 10 to 15 percent of the aluminum ions on the surface bond to six oxygen ions: one underneath to the bulk of the alumina, four in a square on the surface and one on top to an oxygen ion in the water molecule.

Removing the water by heating leaves the aluminum ion with only five oxygen bonds. In this "penta-coordinated" state, the aluminum is open for bonding to the barium oxide. Results from the NMR spectrometer showed that the catalyst filled every available penta-coordinated site, atom-for-atom.

The team is now examining the interaction of gamma-alumina with other metal and metal oxide particles to determine if penta-coordinated aluminum ions are suitable bonding locations for other catalytic materials.

Journal reference: Ja Hun Kwak, Jain Zhi Hu, Do Heui Kim, Janos Szanyi and Charles Peden. "Penta-coordinated Al3+ Ions as Preferential Nucleation Sites for BaO on γ-Al2O3." Journal of Catalysis 251(1):189-194. July 2007.

DOE's Office of Basic Energy Sciences, Division of Chemical Sciences funded the research, which was facilitated by the laboratory's Institute for Interfacial Catalysis.


Story Source:

The above story is based on materials provided by DOE/Pacific Northwest National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Pacific Northwest National Laboratory. "Catalysis Discovery Takes Aim At NOx Emissions." ScienceDaily. ScienceDaily, 26 February 2008. <www.sciencedaily.com/releases/2008/02/080222095427.htm>.
DOE/Pacific Northwest National Laboratory. (2008, February 26). Catalysis Discovery Takes Aim At NOx Emissions. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2008/02/080222095427.htm
DOE/Pacific Northwest National Laboratory. "Catalysis Discovery Takes Aim At NOx Emissions." ScienceDaily. www.sciencedaily.com/releases/2008/02/080222095427.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins