Featured Research

from universities, journals, and other organizations

Switchyard For Single Electrons

Date:
February 25, 2008
Source:
Physikalisch-Technische Bundesanstalt
Summary:
Scientists have transferred very small charge "packets," comprising a well-defined number of few electrons, between metallic electrons precisely by using a single-electron pump. A single-electron transistor, being able to resolve charge variations of a single electron or less, served as a charge detector to monitor the charge movement. The successful experiment is an important milestone on the way to the setup of a new standard for capacitance.

Scientists from Physikalisch-Technische Bundesanstalt have successfully transferred very small charge "packets", comprising a well-defined number of few electrons, between metallic electrons by using a single-electron pump. A single-electron transistor, being able to resolve charge variations of a single electron or less, served as a charge detector to monitor the charge movement.

Related Articles


The successful experiment is an important milestone on the way to the setup of a new standard for capacitance, where a capacitor is charged by a well-known number of electrons. The corresponding voltage can be measured using a Josephson voltage standard. Tracing the capacitance to a resistance via the quantum-Hall effect finally allows the realisation of the so-called "Quantum Metrological Triangle", which establishes a link between all three electrical quantum effects. The precision aimed at in the experiment requires the demonstrated manipulation of charge on the scale of a single electron.

Task of this metrology project is the implementation of a new capacitance standard which is based on the quantization of electrical charge in units of the elementary charge e.

The basic idea of the experiment is to charge a capacitor with a well-known number of n electrons and to measure the resulting electrical voltage U. Thus, the capacitance C of the capacitor is determined by C = ne / U. Accurate "counting" of the electrons occurs with the help of a special Single-Electron Tunneling (SET) circuit, a so-called SET-pump. If the voltage U is measured by using a Josephson voltage standard (U = ifh / 2e), the capacitance C can be expressed exclusively in terms of the fundamental constants e and h, the frequency f and integer numbers (n and i). Thus, the experiment enables electrical capacitance metrology on quantum basis, as it is already usual for the electrical voltage U (using the Josephson effect) and the electrical resistance R(using the quantum Hall effect).

If the experiment is performed with a relative uncertainty of 10-7 (0.1 ppm), it opens a way to realize the "quantum metrological triangle" which is a consistency test for the three electrical quantum effects involved. The results of this experiment will impact on a future system of units which will be based on fundamental constants.


Story Source:

The above story is based on materials provided by Physikalisch-Technische Bundesanstalt. Note: Materials may be edited for content and length.


Cite This Page:

Physikalisch-Technische Bundesanstalt. "Switchyard For Single Electrons." ScienceDaily. ScienceDaily, 25 February 2008. <www.sciencedaily.com/releases/2008/02/080225103910.htm>.
Physikalisch-Technische Bundesanstalt. (2008, February 25). Switchyard For Single Electrons. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2008/02/080225103910.htm
Physikalisch-Technische Bundesanstalt. "Switchyard For Single Electrons." ScienceDaily. www.sciencedaily.com/releases/2008/02/080225103910.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Two Stunt Pilots Perform Incredibly Close Flyby

Two Stunt Pilots Perform Incredibly Close Flyby

Rumble (Jan. 29, 2015) — Two pilots from &apos;Escuadrilla Argentina de Acrobacia Aιrea&apos; perform an incredibly low altitude flyby stunt during a recent show exhibition in Argentina. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins