Featured Research

from universities, journals, and other organizations

Silica Smart Bombs Deliver Knock-out To Bacteria

Date:
February 26, 2008
Source:
University of North Carolina at Chapel Hill
Summary:
Bacteria mutate for a living, evading antibiotic drugs while killing tens of thousands of people in the United States each year. But as concern about drug-resistant bacteria grows, one novel approach seeks to thwart the bug without a drug by taking a cue from nature.

Mark Schoenfisch and his lab of analytical chemists at UNC have created nano-scale scaffolds made of silica and loaded with nitric oxide (NO) -- an important molecule in mammals that plays a role in regulating blood pressure, neurotransmission and fighting bacterial infections, among other vital functions.
Credit: Image courtesy of University of North Carolina at Chapel Hill

Bacteria mutate for a living, evading antibiotic drugs while killing tens of thousands of people in the United States each year. But as concern about drug-resistant bacteria grows, one novel approach under way at the University of North Carolina at Chapel Hill seeks to thwart the bug without a drug by taking a cue from nature.

Related Articles


Mark Schoenfisch and his lab of analytical chemists at UNC have created nano-scale scaffolds made of silica and loaded with nitric oxide (NO) -- an important molecule in mammals that plays a role in regulating blood pressure, neurotransmission and fighting bacterial infections, among other vital functions.

"There was evidence that nitric oxide kills bacteria, but the difficult part involved storing it in a manner such that it could be delivered to bacterial cells," said Evan Hetrick, a doctoral student in Schoenfisch's lab and lead author on a paper in the February issue of the American Chemical Society's journal ACS Nano.

While the body constantly produces NO, and can ramp up its production to fight infection, sometimes it can't produce enough to mount a sufficient defense. Previous research using small molecules to deliver NO hit roadblocks -- controlling the release of the compound was difficult and the molecules were potentially toxic to healthy cells in the body.

"With silica scaffolds, nitric oxide stores easily and we could very carefully control the release," said Schoenfisch, an associate professor of chemistry in UNC's College of Arts and Sciences.

Schoenfisch, Hetrick and their colleagues tested their silica scaffolds head-to-head with small molecules against the bacteria Pseudomonas aeruginosa, which is commonly found in burn and other wound infections.

NO delivered by both methods completely killed the bacteria. But the silica nanoparticles delivered the NO right to the bacteria's doorstep. In contrast, the small molecules released NO indiscriminately, and the concentration of NO is lost as it makes its way toward bacterial cells.

"With the silica particles, more NO actually reached the inside of the cells, enhancing the efficacy of the nanoparticles compared to the small molecule. So, the overall amount of NO needed to kill bacteria is much less with silica nanoparticles," Schoenfisch said. "And, with small molecules, you're left with potentially toxic byproducts," Schoenfisch said. Using mouse cells, they proved that the silica nanoparticles weren't toxic to healthy cells, but the small molecules were.

Schoenfisch has a history of success with NO-releasing materials. His lab has successfully created a variety of coatings for different biomedical applications. Such materials hold promise as anti-infective coatings and as methods to improve the body's integration of biological implants -- such as hip or knee joints -- and implanted sensors that relay various biological measures, such as blood glucose or oxygen concentrations.

The amount and rate of NO release are easily modified and controlled by using these different silica nanoparticles. "Release rates are a function of the precursors used to make the nanoparticles," Schoenfisch said. "It depends entirely on how we build the silica structures."

Future research will include studying additional bacterial strains, active targeting, preferential uptake and biodistribution studies.


Story Source:

The above story is based on materials provided by University of North Carolina at Chapel Hill. Note: Materials may be edited for content and length.


Cite This Page:

University of North Carolina at Chapel Hill. "Silica Smart Bombs Deliver Knock-out To Bacteria." ScienceDaily. ScienceDaily, 26 February 2008. <www.sciencedaily.com/releases/2008/02/080225213452.htm>.
University of North Carolina at Chapel Hill. (2008, February 26). Silica Smart Bombs Deliver Knock-out To Bacteria. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2008/02/080225213452.htm
University of North Carolina at Chapel Hill. "Silica Smart Bombs Deliver Knock-out To Bacteria." ScienceDaily. www.sciencedaily.com/releases/2008/02/080225213452.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins