Featured Research

from universities, journals, and other organizations

Clues To How Plants Form Cell Walls Could Aid Biofuels, Nanotech

Date:
March 1, 2008
Source:
University of Massachusetts Amherst
Summary:
When plant cells divide, they assemble molecular building blocks into new cell walls made of carbohydrate and protein, but scientists know almost nothing about how this process occurs. Researchers have found that the first step in building new plant cell walls is the assembly of a scaffold made of structural proteins, a process similar to using a metal or wood scaffold to construct the walls of a building. Unlocking the secrets of how plants build cell walls could lead to better materials for the production of biofuels such as ethanol from cellulose, plant fibers that are a cheaper and more plentiful alternative to the starches currently used.

When plant cells divide, they assemble molecular building blocks into new cell walls made of carbohydrate and protein, but scientists know almost nothing about how this process occurs. A team of researchers including Maura Cannon of the University of Massachusetts Amherst has found that the first step in building new plant cell walls is the assembly of a scaffold made of structural proteins, a process similar to using a metal or wood scaffold to construct the walls of a building.

Unlocking the secrets of how plants build cell walls could lead to better materials for the production of biofuels such as ethanol from cellulose, plant fibers that are a cheaper and more plentiful alternative to the starches currently used. “Plant cell walls are the most abundant biomass on Earth,” says Cannon, a professor in the biochemistry department. “If we know how the cell wall assembles, we can exploit this information to engineer plants with cell wall structures and compositions that are commercially desirable.”

Nanotechnology, which depends on molecules that can assemble themselves into an organized structure without external direction, is another field that could benefit. “The structural proteins in plant cell walls know how to self-assemble,” says Cannon. “They do it all the time. Since the most abundant proteins on Earth can self-assemble, we should be able to figure out how the process works. Such knowledge will be fundamental to the success of the emerging nanotechnology industry.”

Cannon’s research is based on Arabidopsis thaliana or Thale Cress, a flowering weed from the mustard family that is common in North America. Arabidopsis was the first plant to have its entire genome sequenced, and scientists have created a library with mutated copies of every gene. Cannon and graduate students Qi Hall and Yumei Wang selected Arabidopsis embryos with a mutation in a specific gene called RSH. This lethal mutation results in embryos with irregular cell shapes and sizes. Electron micrographs of the embryos showed that normal cell walls were unable to form, indicating that the protein produced by the RSH gene was critical to their formation.

Protein produced by the RSH gene in wild-type Arabidopsis plants was purified and studied by Marcia Kieliszewski at Ohio University and Derek Lamport at the University of Sussex and identified as AtEXT3, an extensin protein that turned out to have some interesting qualities. Laboratory tests showed that molecules of AtEXT3 are able to recognize each other and link together at sites that contain a specific amino acid.

Atomic force microscopy performed by Liwei Chen at Ohio University showed AtEXT3 forming a network of ropes that overlap and link to form a scaffold that branches like the limbs of a tree. Areas with positive charges are exposed in the scaffold. Cannon proposes that AtEXT3, which concentrates along the new wall formed when plant cells divide, forms a network with positive charges that attract molecules of negatively charged pectin like a magnet. “The positively charged AtEXT3 scaffold serves as a guide for the deposition of pectin to form a highly organized matrix,” says Cannon.

Cannon’s research can be applied to any plant, since structural proteins are part of the cell wall of all plant species. A recent grant from the National Science Foundation allows Cannon and Kieliszewski to continue working on AtEXT3. “Once we know which parts of the molecule are most important, and determine how they affect the cell wall, we could make synthetic extensins that produce designer plants with a cell wall composition and structure that meets the needs of industry,” says Cannon. “The possibilities would be endless.”

Cannon was joined by colleagues from Ohio University and the University of Sussex, England. Results were published in the Feb. 12, 2008 issue of The Proceedings of the National Academy of Sciences.


Story Source:

The above story is based on materials provided by University of Massachusetts Amherst. Note: Materials may be edited for content and length.


Cite This Page:

University of Massachusetts Amherst. "Clues To How Plants Form Cell Walls Could Aid Biofuels, Nanotech." ScienceDaily. ScienceDaily, 1 March 2008. <www.sciencedaily.com/releases/2008/02/080227215051.htm>.
University of Massachusetts Amherst. (2008, March 1). Clues To How Plants Form Cell Walls Could Aid Biofuels, Nanotech. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2008/02/080227215051.htm
University of Massachusetts Amherst. "Clues To How Plants Form Cell Walls Could Aid Biofuels, Nanotech." ScienceDaily. www.sciencedaily.com/releases/2008/02/080227215051.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins