Featured Research

from universities, journals, and other organizations

Promising New Material For Capturing Carbon Dioxide From Smokestacks

Date:
March 4, 2008
Source:
Georgia Institute of Technology
Summary:
Researchers have developed a new, low-cost material for capturing carbon dioxide from the smokestacks of coal-fired power plants and other generators of the greenhouse gas. Produced with a simple one-step chemical process, the new material has a high capacity for absorbing carbon dioxide – and can be reused many times. Combined with improved heat management techniques, the new material could provide a cost-effective way to capture large quantities of carbon dioxide from coal-burning facilities.

Georgia Tech graduate student Jeffrey Drese displays a tubular reactor filled with the HAS adsorbent dispersed in sand. The reactor will be used to test the new material for its ability to capture carbon dioxide.
Credit: Gary Meek

Researchers have developed a new, low-cost material for capturing carbon dioxide (CO2) from the smokestacks of coal-fired power plants and other generators of the greenhouse gas. Produced with a simple one-step chemical process, the new material has a high capacity for absorbing carbon dioxide – and can be reused many times.

Combined with improved heat management techniques, the new material could provide a cost-effective way to capture large quantities of carbon dioxide from coal-burning facilities. Existing CO2 capture techniques involve the use of solid materials that lack sufficient stability for repeated use – or liquid adsorbents that are expensive and require significant amounts of energy.

“This is something that you could imagine scaling up for commercial use,” said Christopher Jones, a professor in the School of Chemical and Biomolecular Engineering at the Georgia Institute of Technology. “Our material has the combination of high capacity, easy synthesis, low cost and a robust ability to be recycled – all the key criteria for an adsorbent that would be used on an industrial scale.”

Details of the new material, known as hyperbranched aluminosilica (HAS), are scheduled to appear in the March 19th issue of the Journal of the American Chemical Society. The research was supported by the U.S. Department of Energy’s National Energy Technology Laboratory.

Growing concern over increased levels of atmospheric carbon dioxide has prompted new interest in techniques for removing the gas from the smokestacks of such large-scale sources as coal-fired electric power plants. But to minimize their economic impact, the cost of adding such controls must be minimized so they don’t raise the price of electricity significantly.

Once removed from the stack gases, the CO2 might be sequestered in the deep ocean, in mined-out coal seams or in depleted petroleum reservoirs. If the CO2 capture and sequestration process can be made practical, America’s large resources of coal could be used with less impact on global climate change.

Working with Department of Energy scientists Daniel Fauth and McMahan Gray, Jones and graduate students Jason Hicks and Jeffrey Drese developed a way to add CO2-adsorbing amine polymer groups to a solid silica substrate using covalent bonding. The strong chemical bonds make the material robust enough to be reused many times.

“Given the volumes involved, you must be able to recycle the adsorbent material for the process to be cost-effective,” said Jones. “Otherwise, you would be creating large and expensive waste streams of adsorbent.”

Production of the HAS material is relatively simple, and requires only the mixing of the silica substrate with a precursor of the amine polymer in solution. The amine polymer is initiated on the silica surface, producing a solid material that can be filtered out and dried.

To test the effectiveness of their new material, the Georgia Tech researchers passed simulated flue gases through tubes containing a mixture of sand and HAS. The CO2 was adsorbed at temperatures ranging from 50 to 75 degrees Celsius. Then the HAS was heated to between 100 and 120 degrees Celsius to drive off the gas so the adsorbent could be used again.

The researchers tested the material across 12 cycles of adsorption and desorption, and did not measure a significant loss of capacity. The HAS material can adsorb up to 5 times as much carbon dioxide as some of the best existing reusable materials.

The HAS material works in the presence of moisture, an unavoidable by-product of the combustion process.

Adsorption of the CO2 generates considerable amounts of heat, which must be managed and thermally recycled. Removal of the carbon dioxide requires heating the adsorbent.

“How to manage this heat is one of the most critical issues controlling the economics of a potential large scale process,” Jones added. “You must control the production of heat by the adsorption step, and you don’t want to put any more energy into the desorption process than necessary.”

Because of their chemical structure, the amine groups provide three different classes of binding sites for carbon dioxide, each with a different binding energy. Optimizing the production of binding sites is a goal for future research, Jones said.

Beyond the material, other components of the separation and sequestration process must also be improved and optimized before it can become a practical technique for removing CO2 from flue gases. The best way to expose the flue gases to the adsorbent material is also key issue.

“There are many pieces that must fit together to make the overall economics of carbon dioxide capture and sequestration work,” Jones added. “The biggest challenge for this whole field of research right now is to do this as inexpensively as possible. We think that our class of materials – a hyperbranched amine polymer bound to a solid support – is potentially ideal because it is simple to make, reusable and has a high capacity.”

The article "Designing Adsorbents for CO2 Capture from Flue Gas-Hyperbranched Aminosilicas Capable of Capturing CO2 Reversibly" is scheduled for the March 19 issue of the ACS' Journal of the American Chemical Society.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "Promising New Material For Capturing Carbon Dioxide From Smokestacks." ScienceDaily. ScienceDaily, 4 March 2008. <www.sciencedaily.com/releases/2008/03/080303163804.htm>.
Georgia Institute of Technology. (2008, March 4). Promising New Material For Capturing Carbon Dioxide From Smokestacks. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2008/03/080303163804.htm
Georgia Institute of Technology. "Promising New Material For Capturing Carbon Dioxide From Smokestacks." ScienceDaily. www.sciencedaily.com/releases/2008/03/080303163804.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins