Featured Research

from universities, journals, and other organizations

Cellular Construction Methods Emulated at Nano-scale

Date:
March 6, 2008
Source:
Wiley-Blackwell
Summary:
Not only is our body made of individual organs, our cells themselves are made of tiny organelles, a variety of separate compartments that fulfill different tasks. Such functional, nanostructured systems would also be useful for technical applications, such as biosensors, self-repairing materials, optoelectronic components, or nanocapsules. However, it has not been possible to recreate structures with sufficient complexity in the lab. Researchers are now pursuing a new angle to produce functional nanostructured systems.

Researchers are now allowing surfactants and gelators to form aggregates.
Credit: Copyright Wiley-VCH

Not only is our body made of individual organs, our cells themselves are made of tiny organelles, a variety of separate compartments that fulfill different tasks. Such functional, nanostructured systems would also be useful for technical applications, such as biosensors, self-repairing materials, optoelectronic components, or nanocapsules. However, it has not been possible to recreate structures with sufficient complexity in the lab.

Researchers in the Netherlands, led by Jan van Esch at the Universities of Delft and Groningen as well as the BioMaDe Technology Foundation, are now pursuing a new angle. They are allowing surfactants and gelators to form aggregates. These aggregates coexist without interfering with each other and thus make versatile, highly complex structures with separate compartments.

Cells contain various components, such as channels, “motors”, structural frameworks (cytoskeleton), and “power plants” (mitochondria). In order for these to form, their building blocks, mainly proteins and lipids, must “recognize” each other and form the correct assembly by self-aggregation.

In addition, it is critical that compatible components do not separate into different phases: when proteins fold, the water-loving (hydrophilic) and water-repellent (hydrophobic) parts of the molecule stay far away from each other and aggregate with “like-minded” components. Biomembranes are formed when many small lipid molecules aggregate such that their hydrophobic “tails” face inward together and their hydrophilic “heads” point outward toward the aqueous medium.

The Dutch team imitated this concept by using two types of self-aggregating compounds: surfactants and gelators. Like the lipids in natural membranes, surfactants have a hydrophilic segment and a hydrophobic segment and aggregate into structures such as membrane-like double layers or vesicles (bubbles). To imitate the forces involved in protein folding—hydrogen-bridge bonds and hydrophobic interactions—the team used a disk-shaped gelator, in which hydrophobic and hydrophilic molecular components alternate in concentric rings. Just as for proteins, like attracts like. This causes the disks to stack together into columns, which forms long fibers, generating a three-dimensional network in the solution to make a gel.

The researchers allow their surfactants and gelators to aggregate together. In this process, the different components take no notice of each other. This independent formation of different supramolecular structures within a single system is called orthogonal self-aggregation. This results in the formation of novel, complex, compartmentalized architectures, for example, interpenetrating but independent networks or vesicle configurations that coexist with gel fibers.

Journal reference: Preparation of Nanostructures by Orthogonal Self-Assembly of Hydrogelators and Surfactants. Angewandte Chemie International Edition 2008, 47, 2063–2066. doi: 10.1002/anie.200704609


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Cite This Page:

Wiley-Blackwell. "Cellular Construction Methods Emulated at Nano-scale." ScienceDaily. ScienceDaily, 6 March 2008. <www.sciencedaily.com/releases/2008/03/080305105232.htm>.
Wiley-Blackwell. (2008, March 6). Cellular Construction Methods Emulated at Nano-scale. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2008/03/080305105232.htm
Wiley-Blackwell. "Cellular Construction Methods Emulated at Nano-scale." ScienceDaily. www.sciencedaily.com/releases/2008/03/080305105232.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) — You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
Get A Mortgage, Receive A Cat — Only In Russia

Get A Mortgage, Receive A Cat — Only In Russia

Newsy (Sep. 2, 2014) — The incentive is in keeping with a Russian superstition that it's good luck for a cat to be the first to cross the threshold of a new home. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins