Featured Research

from universities, journals, and other organizations

DNA Vaccines That Home In On DCs Are More Potent

Date:
March 10, 2008
Source:
Journal of Clinical Investigation
Summary:
One strategy being pursued to develop new vaccines against infectious diseases is DNA vaccination. The idea is that following administration of a DNA vaccine, the body converts the information in the DNA vaccine into a protein that activates an immune response. Current DNA vaccines induce relatively weak immune responses. However, new data, generated in mice, has now identified a way to make DNA vaccines more potent.

One strategy being pursued to develop new vaccines against infectious diseases is DNA vaccination. The idea is that following administration of a DNA vaccine, the body converts the information in the DNA vaccine into a protein that activates an immune response.

However, current DNA vaccines induce relatively weak immune responses even if administered multiple times. New data, generated in mice, by Ralph Steinman and colleagues, at the Rockefeller University, New York, has now identified a way to make DNA vaccines more potent.

In the study, mice were administered a DNA vaccine that included the information to make a single protein comprised of the HIV protein gp41 fused to a single-chain Fv antibody specific for DEC205. DEC205 is expressed by immune cells known as DCs, which show proteins from infectious organisms to immune cells known as T cells that then attack the infectious organism.

The authors found that the single-chain Fv antibody specific for DEC205 targeted the protein made from the information in the DNA vaccine to DCs, such that it was expressed exclusively in DCs. Furthermore, this DNA vaccine induced a much stronger T cell response than DNA vaccines including information to make the HIV protein gp41 fused to an irrelevant single-chain Fv antibody, and it protected mice more efficiently from a virus engineered to express the HIV protein gp41.

These data led to the suggestion that DNA vaccines might be more potent if the information they contain generates a protein that is targeted to DCs, for example by fusion to a single-chain Fv antibody specific for a DC surface molecule.

Journal reference: The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. Journal of Clinical Investigation. March 2008.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Cite This Page:

Journal of Clinical Investigation. "DNA Vaccines That Home In On DCs Are More Potent." ScienceDaily. ScienceDaily, 10 March 2008. <www.sciencedaily.com/releases/2008/03/080306202735.htm>.
Journal of Clinical Investigation. (2008, March 10). DNA Vaccines That Home In On DCs Are More Potent. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2008/03/080306202735.htm
Journal of Clinical Investigation. "DNA Vaccines That Home In On DCs Are More Potent." ScienceDaily. www.sciencedaily.com/releases/2008/03/080306202735.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins