Science News
from research organizations

DNA Vaccines That Home In On DCs Are More Potent

Date:
March 10, 2008
Source:
Journal of Clinical Investigation
Summary:
One strategy being pursued to develop new vaccines against infectious diseases is DNA vaccination. The idea is that following administration of a DNA vaccine, the body converts the information in the DNA vaccine into a protein that activates an immune response. Current DNA vaccines induce relatively weak immune responses. However, new data, generated in mice, has now identified a way to make DNA vaccines more potent.
Share:
       
FULL STORY

One strategy being pursued to develop new vaccines against infectious diseases is DNA vaccination. The idea is that following administration of a DNA vaccine, the body converts the information in the DNA vaccine into a protein that activates an immune response.

However, current DNA vaccines induce relatively weak immune responses even if administered multiple times. New data, generated in mice, by Ralph Steinman and colleagues, at the Rockefeller University, New York, has now identified a way to make DNA vaccines more potent.

In the study, mice were administered a DNA vaccine that included the information to make a single protein comprised of the HIV protein gp41 fused to a single-chain Fv antibody specific for DEC205. DEC205 is expressed by immune cells known as DCs, which show proteins from infectious organisms to immune cells known as T cells that then attack the infectious organism.

The authors found that the single-chain Fv antibody specific for DEC205 targeted the protein made from the information in the DNA vaccine to DCs, such that it was expressed exclusively in DCs. Furthermore, this DNA vaccine induced a much stronger T cell response than DNA vaccines including information to make the HIV protein gp41 fused to an irrelevant single-chain Fv antibody, and it protected mice more efficiently from a virus engineered to express the HIV protein gp41.

These data led to the suggestion that DNA vaccines might be more potent if the information they contain generates a protein that is targeted to DCs, for example by fusion to a single-chain Fv antibody specific for a DC surface molecule.

Journal reference: The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. Journal of Clinical Investigation. March 2008.


Story Source:

The above post is reprinted from materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Cite This Page:

Journal of Clinical Investigation. "DNA Vaccines That Home In On DCs Are More Potent." ScienceDaily. ScienceDaily, 10 March 2008. <www.sciencedaily.com/releases/2008/03/080306202735.htm>.
Journal of Clinical Investigation. (2008, March 10). DNA Vaccines That Home In On DCs Are More Potent. ScienceDaily. Retrieved July 31, 2015 from www.sciencedaily.com/releases/2008/03/080306202735.htm
Journal of Clinical Investigation. "DNA Vaccines That Home In On DCs Are More Potent." ScienceDaily. www.sciencedaily.com/releases/2008/03/080306202735.htm (accessed July 31, 2015).

Share This Page: