Featured Research

from universities, journals, and other organizations

Rush To Produce Corn-based Ethanol Will Worsen 'Dead Zone' In Gulf Of Mexico, Study Says

Date:
March 12, 2008
Source:
University of British Columbia
Summary:
The US government's rush to produce corn-based ethanol as a fuel alternative will worsen pollution in the Gulf of Mexico, increasing a "dead zone" that kills fish and aquatic life, according to a new study.

The U.S. government's rush to produce corn-based ethanol as a fuel alternative will worsen pollution in the Gulf of Mexico, increasing a "Dead Zone" that kills fish and aquatic life, according to University of British Columbia researcher Simon Donner.

Related Articles


In the first study of its kind, Donner and Chris Kucharik of the University of Wisconsin quantify the effect of biofuel production on the problem of nutrient pollution in a waterway.

The researchers looked at the estimated land and fertilizer required to meet proposed corn-based ethanol production goals. Recently, the U.S. Senate announced its energy policy aims of generating 36 billion gallons annually of ethanol by the year 2022, of which 15 billion gallons can be produced from corn starch. The corn-ethanol goal represents more than three times than triple the production in 2006.

"This rush to expand corn production is a disaster for the Gulf of Mexico," says Donner, an assistant professor in the Dept. of Geography. "The U.S. energy policy will make it virtually impossible to solve the problem of the Dead Zone."

Nitrogen and phosphorus from agricultural fertilizer have been found to promote excess growth of algae in water bodies -- a problem that's common across North America and in many areas of the world.

In some cases, decomposition of algae consumes much of the oxygen in the water. Fertilizer applied to cornfields in the central U.S. -- including states such as Illinois, Iowa, Nebraska and Wisconsin -- is the primary source of nitrogen pollution in the Mississippi River system, which drains into the Gulf of Mexico.

Each summer, the export of nitrogen creates a large "Dead Zone" in the Gulf of Mexico, a region of oxygen-deprived waters that are unable to support aquatic life. In recent years, it has reached over 20,000 km2 in size, which is equivalent to the area of New Jersey.

Donner and Kucharik's findings suggest that if the U.S. were to meet its proposed ethanol production goals, nitrogen loading by the Mississippi River to the Gulf of Mexico would increase by 10-19 per cent.

To arrive at this figure, Donner and Kucharik combined the agricultural land use scenarios with models of terrestrial and aquatic nitrogen cycling.

"The nitrogen levels in the Mississippi will be more than twice the recommendation for the Gulf," says Donner. "It will overwhelm all the suggested mitigation options."

The results of the study call into question the assumption that enough land exists to fulfill current feed crop demand and expand corn and other crop production for ethanol.

The study concludes that increasing ethanol production from U.S. croplands without endangering water quality and aquatic ecosystems will require a substantial reduction in the amount of corn that is grown for animal feed and meat production.

These findings will appear in the March 10 edition of the Proceedings of the National Journal of Sciences.


Story Source:

The above story is based on materials provided by University of British Columbia. Note: Materials may be edited for content and length.


Cite This Page:

University of British Columbia. "Rush To Produce Corn-based Ethanol Will Worsen 'Dead Zone' In Gulf Of Mexico, Study Says." ScienceDaily. ScienceDaily, 12 March 2008. <www.sciencedaily.com/releases/2008/03/080310181604.htm>.
University of British Columbia. (2008, March 12). Rush To Produce Corn-based Ethanol Will Worsen 'Dead Zone' In Gulf Of Mexico, Study Says. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2008/03/080310181604.htm
University of British Columbia. "Rush To Produce Corn-based Ethanol Will Worsen 'Dead Zone' In Gulf Of Mexico, Study Says." ScienceDaily. www.sciencedaily.com/releases/2008/03/080310181604.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins