Featured Research

from universities, journals, and other organizations

Fight Against Obesity: Increase Cells' Energy Consumption With Mitochondrial Uncoupling?

Date:
March 15, 2008
Source:
Public Library of Science
Summary:
With obesity still on the increase, it appears that the main weapon in the fight against it -- reducing energy consumption by eating less -- is ineffective. There is evident need to search for new treatment strategies dealing with the opposite aspect of the energy balance: increasing energy consumption. Researchers have now found a way to increase cells' energy consumption: mitochondrial uncoupling. Mitochondrial uncoupling has been demonstrated in human skeletal muscle.

With obesity still on the increase, it appears that the main weapon in the fight against it - reducing energy consumption by eating less - is ineffective. There is evident need to search for new treatment strategies dealing with the opposite aspect of the energy balance: increasing energy consumption. Researchers at Maastricht University have now found a way to increase cells' energy consumption: mitochondrial uncoupling.

PhD candidate Sander Wijers and his colleagues Patrick Schrauwen, Prof. Wim Saris and Wouter van Marken Lichtenbelt have shown that this process occurs naturally in human skeletal muscle cells when exposed to mild cold. They carried out muscle biopsies on 11 lean, healthy male subjects both under normal and mild cold conditions. Their results could lead to the development of drugs that stimulate mitochondrial uncoupling, and thus contribute to obesity treatment.

Fats and sugars are broken down in the mitochondria, or energy factories of the cells. ATP - the energy source used, for example, when muscles contract and for many other cellular processes - is formed using the energy released in this process. In some cases, such as when exposed to cold, not all the energy released from sugars and fats is used to produce ATP; stored energy is used for heat, reducing the availability of ATP for cellular processes. This phenomenon is called mitochondrial uncoupling. Fats and sugars are still broken down in the uncoupled mitochondria, but the energy released is not entirely used for cellular processes. More energy is therefore required to carry out the same physical functions.

Further genomic and proteomic research is required to identify the proteins responsible for uncoupling in skeletal muscle mitochondria. The animal proteins UCP1, UCP2, UCP4 and UCP5 detected in tests appear not to exist in human muscle tissue. And although UCP3 is found in human muscles, it seems to be involved primarily in fatty acid metabolism, not in mitochondrial uncoupling.

Citation: Wijers SLJ, Schrauwen P, Saris WHM, van Marken Lichtenbelt WD (2008) Human Skeletal Muscle Mitochondrial Uncoupling Is Associated with Cold Induced Adaptive Thermogenesis. PLoS One 3(3): e1777. doi:10.1371/journal.pone.0001777 http://www.plosone.org/doi/pone.0001777


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "Fight Against Obesity: Increase Cells' Energy Consumption With Mitochondrial Uncoupling?." ScienceDaily. ScienceDaily, 15 March 2008. <www.sciencedaily.com/releases/2008/03/080311215656.htm>.
Public Library of Science. (2008, March 15). Fight Against Obesity: Increase Cells' Energy Consumption With Mitochondrial Uncoupling?. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2008/03/080311215656.htm
Public Library of Science. "Fight Against Obesity: Increase Cells' Energy Consumption With Mitochondrial Uncoupling?." ScienceDaily. www.sciencedaily.com/releases/2008/03/080311215656.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins