Featured Research

from universities, journals, and other organizations

Tibetan Plateau Research Suggest Uplifts Occurred In Stages

Date:
March 26, 2008
Source:
University of California - Santa Cruz
Summary:
The vast Tibetan Plateau -- the world's highest and largest plateau, bordered by the world's highest mountains -- has long challenged geologists trying to understand how and when the region rose to such spectacular heights. New evidence from an eight-year study by US and Chinese researchers indicates that the plateau rose in stages, with uplift occurring first in the central plateau and later in regions to the north and south. The Himalayan region remained below sea level while central region rose, geologists say.

UCSC graduate student Peter Lippert and coworker Igor Villa of the University of Bern collect samples from an outcrop in Tibet.
Credit: Image courtesy of University of California - Santa Cruz

The vast Tibetan Plateau--the world's highest and largest plateau, bordered by the world's highest mountains--has long challenged geologists trying to understand how and when the region rose to such spectacular heights. New evidence from an eight-year study by U.S. and Chinese researchers indicates that the plateau rose in stages, with uplift occurring first in the central plateau and later in regions to the north and south.

"The middle part of the plateau was uplifted first at least 40 million years ago, while the Himalayan Range in the south and also the mountains to the north were uplifted significantly later," said Xixi Zhao, a research scientist at the University of California, Santa Cruz.

The team found marine fossils suggesting that the now lofty Himalayas remained below sea level at a time when the central plateau was already at or near its modern elevation, Zhao said. The average elevation of the plateau today is more than 4,500 meters (14,850 feet).

The researchers published their findings in the Proceedings of the National Academy of Sciences (online the week of March 24 and later in print). Zhao, who is affiliated with the Institute of Geophysics and Planetary Physics at UCSC, is the second author of the paper. First author Chengshan Wang of the China University of Geosciences in Beijing has been collaborating with Zhao and other UCSC researchers since 1996.

Known as "the roof of the world," the Tibetan Plateau was created by the ongoing collision of tectonic plates as India plows northward into Asia. Coauthor Robert Coe, a professor of Earth and planetary sciences at UCSC, said ideas about how the uplift of the plateau occurred have been evolving since well before his first visit to Tibet in 1988.

"People used to talk about the whole plateau coming up at once, but it has become clear that different parts of the plateau were elevated at different times," Coe said. "Our work shows that the central part of the plateau was uplifted first, and it seems to fit pretty well with other studies."

The rise of the Tibetan Plateau led to dramatic changes in the climate, both regionally and globally. For climate researchers trying to understand major episodes of global climate change in Earth's past, the timing of the uplift is a crucial piece of information.

"One of the traditional views of when Tibet became a high plateau is that it's a relatively recent phenomenon that happened in the last 15 million years," said coauthor Peter Lippert, a UCSC graduate student who has spent five field seasons studying the geology of the plateau. "The existence of a high plateau at least 40 million years ago could have important climatic implications."

The team of U.S. and Chinese geologists based their findings on extensive field studies conducted mostly in a remote interior region of the Tibetan Plateau. They focused on an area called the Hoh Xil Basin in the north-central part of the plateau. The area's geologic history is recorded in layers of sedimentary rock 5,000 meters thick. Now a part of the high plateau, it was once a basin on the northern edge of the central plateau, Lippert said.

"The structure of the basin and way the sediments were deposited show that it is the type of basin that forms at the base of large mountains. So we've shown that there was high topography to the south of the Hoh Xil Basin at least 40 million years ago," he said.

Several lines of evidence support the team's conclusions. In addition to field studies, the researchers used a variety of laboratory techniques to analyze and date the rocks. Past changes in Earth's magnetic field, recorded in the magnetization of the rocks, provide one method of dating. Called magnetostratigraphy, this analysis was performed in Coe's laboratory at UCSC. Another dating technique used in the study, called apatite fission-track analysis, is based on the damage trails left in apatite crystals by the decay of radiogenic isotopes.

The researchers also discovered volcanic rock in an area of the central plateau south of the Hoh Xil Basin. The flat bed of hardened lava lies on top of tilted and folded layers of sedimentary rocks; geochronology techniques dated it to 40 million years ago.

"The presence of these flat-lying volcanic rocks tells us that the sedimentary rock was deformed prior to the volcanism, and it extends the age of volcanism in this part of Tibet from 15 million to 40 million years ago," Lippert said.

In the Himalayas, the team found fossils of marine plankton called radiolarians that turned out to be 5 million years younger than any previously discovered marine fossils from that area. The discovery narrows the window of time during which the Himalayas could have been uplifted. When the central part of the Tibetan plateau was uplifted more than 40 million years ago, Mount Everest and the rest of the Himalayas were still part of a deep ocean basin, Zhao said.

The Himalayan region is very complicated, however, and other groups are working to determine the timing of its uplift more precisely, said Lippert. "Our main contribution has been the data we gathered from the north-central part of the plateau, which has not been well studied," he said.

Zhao noted that the U.S. researchers could not have gained access to this area without the support of their Chinese colleagues. This long-term collaboration has included exchanges of graduate students between UCSC and Chinese universities, as well as opportunities for UCSC undergraduates to conduct field research in Tibet. "It has been a very good research collaboration, with a strong educational component as well," Zhao said.

In addition to Wang, Zhao, Lippert, and Coe, the coauthors of the paper include Zhifei Liu of Tongji University in Shanghai; Stephan Graham of Stanford University; Haisheng Yi, Lidong Zhu, and Shun Liu of Chengdu University of Technology in Chengdu; and Yalin Li of China University of Geosciences in Beijing. This research was supported in part by grants from the National Key Basic Research Program of China, the U.S. National Science Foundation, and the Institute of Geophysics and Planetary Physics at UCSC.


Story Source:

The above story is based on materials provided by University of California - Santa Cruz. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Santa Cruz. "Tibetan Plateau Research Suggest Uplifts Occurred In Stages." ScienceDaily. ScienceDaily, 26 March 2008. <www.sciencedaily.com/releases/2008/03/080324173542.htm>.
University of California - Santa Cruz. (2008, March 26). Tibetan Plateau Research Suggest Uplifts Occurred In Stages. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2008/03/080324173542.htm
University of California - Santa Cruz. "Tibetan Plateau Research Suggest Uplifts Occurred In Stages." ScienceDaily. www.sciencedaily.com/releases/2008/03/080324173542.htm (accessed October 23, 2014).

Share This



More Earth & Climate News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) — The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Trick-or-Treating Banned Because of Polar Bears

Trick-or-Treating Banned Because of Polar Bears

Buzz60 (Oct. 21, 2014) — Mother Nature is pulling a trick on the kids of Arviat, Canada. As Mara Montalbano (@maramontalbano) tells us, the effects of global warming caused the town to ban trick-or-treating this Halloween. Video provided by Buzz60
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

Newsy (Oct. 20, 2014) — The United Nations says water is a human right, but should it be free? Detroit has cut off water to residents who can't pay, and the U.N. isn't happy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins