Featured Research

from universities, journals, and other organizations

Human Embryonic Stem Cell Lines Differ In Genes That Could Control Disease Susceptibility

Date:
March 28, 2008
Source:
University of California - Los Angeles
Summary:
Stem cell researchers used a high resolution technique to examine the genome, or total DNA content, of a pair of human embryonic stem cell lines and found that while both lines could form neurons, the lines had differences in the numbers of certain genes that could control such things as individual traits and disease susceptibility.

Stem cell researchers from UCLA used a high resolution technique to examine the genome, or total DNA content, of a pair of human embryonic stem cell lines and found that while both lines could form neurons, the lines had differences in the numbers of certain genes that could control such things as individual traits and disease susceptibility.

The technique used to study the genome, which contains all the genes on 46 chromosomes, is called array CGH. The use of higher resolution techniques, such as array CGH and, soon, whole genome sequencing, will enhance the ability of researchers to examine stem cell lines to determine which are best -- least likely to result in diseases and other problems -- to use in creating therapies for use in humans.

Array CGH provided a much better look at the gene content on the chromosomes of human embryonic stem cells, with a resolution about 100 times better than standard clinical methods. Clinical specialists commonly generate a karyotype to examine the chromosomes of cancer cells or for amniocentesis in prenatal diagnosis, which has a much lower resolution than Array CGH, said Michael Teitell, a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and the senior author of the study. Small defects that could result in big problems later on could be missed using karyotyping for stem cells.

"Basically, this study shows that the genetic makeup of individual human embryonic stem cell lines is unique in the numbers of copies of certain genes that may control traits and things like disease susceptibility," said Teitell, who also is an associate professor of pathology and laboratory medicine and a researcher at UCLA's Jonsson Comprehensive Cancer Center. "So, in choosing stem cell lines to use for therapeutic applications, you want to know about these differences so you don't pick a line likely to cause problems for a patient receiving these cells."

Differences between individual DNA sequences provide the basis for human genetic variability. Forms of variation include single DNA base pair alterations, duplications or deletions of genes or sets of genes, and translocations, a chromosomal rearrangement in which a segment of genetic material from one chromosome becomes heritably linked to another chromosome. These changes can be benign, but they can also promote diseases such as certain cancers, or confer increased risk to other diseases, such as HIV infection or certain types of kidney ailments.

In this study, Teitell and his team sought to determine copy number variants (CNVs), or differences in the numbers of certain genes, in two embryonic stem cell lines. The CNVs provide a unique genetic fingerprint for each line, which can also indicate relatedness between any two stem cell lines. Teitell used embryonic stem cell lines that made different types of neurons and studied them with array CGH for comparison. His team found CNV differences between the two lines in at least seven different chromosome locations below the level of detection using standard karyotype studies. Such differences could impact the therapeutic utility of the lines and could have implications in disease development. More studies will be required to determine the effect of specific CNVs in controlling stem cell function and disease susceptibility, he said.

"In studying embryonic stem cell lines in the future, if we find differences in regions of the genome that we know are associated with certain undesirable traits or diseases, we would choose against using such stem cells, provided safer alternative lines are available," Teitell said.

Large genome-wide association studies are underway in a variety of diseases to determine what genetic abnormalities might be at play. When the genetic fingerprint or predisposing genes for a certain disease is discovered, it could be used as key information in screening embryonic stem cell lines.

The study appears in the March 27, 2008 express edition of the journal Stem Cells.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Human Embryonic Stem Cell Lines Differ In Genes That Could Control Disease Susceptibility." ScienceDaily. ScienceDaily, 28 March 2008. <www.sciencedaily.com/releases/2008/03/080327170929.htm>.
University of California - Los Angeles. (2008, March 28). Human Embryonic Stem Cell Lines Differ In Genes That Could Control Disease Susceptibility. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2008/03/080327170929.htm
University of California - Los Angeles. "Human Embryonic Stem Cell Lines Differ In Genes That Could Control Disease Susceptibility." ScienceDaily. www.sciencedaily.com/releases/2008/03/080327170929.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins