Featured Research

from universities, journals, and other organizations

In Blood Vessel Stents, Innovative Materials Allow Better Control, Delivery Of Gene Therapy

Date:
April 18, 2008
Source:
Children's Hospital of Philadelphia
Summary:
Before gene therapy becomes practical for treating human diseases, researchers must master the details of safe and effective delivery. Cardiology researchers have advanced delivery techniques by creating a versatile synthetic material that can bind to a variety of gene therapy vectors and can be custom-designed for controlled local release of therapeutic genes at a disease site.

Before gene therapy becomes practical for treating human diseases, researchers must master the details of safe and effective delivery. Cardiology researchers at The Children's Hospital of Philadelphia have advanced delivery techniques by creating a versatile synthetic material that can bind to a variety of gene therapy vectors and can be custom-designed for controlled local release of therapeutic genes at a disease site.

In an animal study, the research team used their new synthetic formulation to bind adenoviruses to bare metal stents, tiny metal scaffolds inside the carotid arteries of rats. Adenovirus served as a gene therapy vector to carry genes for an enzyme that significantly reduced restenosis, the hazardous narrowing of a blood vessel that often occurs despite the presence of a stent designed to hold it open.

Although the materials are in an early stage, the hope is that this method may help to treat artery disease in people. "We developed a synthetic gene delivery system that can be used for any gene therapy vector, not just adenoviruses," said study leader Robert J. Levy, M.D., the William J. Rashkind Chair of Pediatric Cardiology at The Children's Hospital of Philadelphia. "Furthermore, this new formulation allows us to increase the dosage of gene therapy vectors delivered, and we can tune the materials for sustained release over a longer time period."

Levy's group recently reported its study in the online version of the journal Circulation, published by the American Heart Association.

Over the past decade, stents have become increasingly useful in treating constricted blood vessels in heart disease and in peripheral artery disease. Stents, which expand partially blocked blood vessels to improve circulation, may be made of bare metal or may have a coating of polymers that release drugs.

Neither type is ideal. Polymer coatings cause inflammation in vessels, which may lead to new bottlenecks at the same time the coating releases drugs meant to reduce vessel injury. Bare metal stents produce less inflammation, but without the benefit of drug delivery. Previously, in a proof-of-principle study in animals, Levy's group attached to stents an extremely thin layer of protein, one molecule thick, containing adenovirus vectors that delivered genes that successfully inhibited restenosis. However, that method had serious limitations; it operated only within a narrow range of temperatures and acidity levels, and was useable only with adenovirus vectors.

The new formulation, said Levy, is more robust, more controllable and adaptable to any virus used as a gene therapy vector, not just adenoviruses. His team synthesized three components into a complex that tethers viral vectors to stent surfaces. One of the three components is an amplifier that increases the dose of gene vector more than fourfold over the previous formulation.

In addition, by varying another component, the stent can be tuned to release vector at a controlled rate that can theoretically be tailored to a schedule appropriate for the particular treatment. "Prior studies have shown that 90 percent of the gene vector is released within 12 to 24 hours, after which vessel blockages regrow," said Levy. "In this study, the stents had significant coverage of the vector seven days later--and less restenosis. Our goal is to customize the materials to allow peak release of the vector when it can have the maximum benefit."

The adenovirus vector carries genes that code for inducible nitric oxide synthase (iNOS), a protein that controls cell damage in blood vessels. In the current study, the iNOS reduced restenosis by 56 percent in the carotid arteries of treated rats, as compared with control animals.

Although this particular study used adenovirus vectors, said Levy, the synthetic formulation could tether any other type of viral gene therapy vector to the metal stents. It might also carry other therapeutic agents in addition to gene vectors. Further studies, he added, will refine these methods and investigate them in larger animal models that more closely simulate human vessel disease.

The National Institutes of Health and the American Heart Association provided grant support for the research. Levy's co-authors from The Children's Hospital of Philadelphia are Ilia Fishbein, M.D., Ph.D.; Ivan Alferiev, Ph.D.; Marina Bakay, Ph.D.; Stanley J. Stachelek, Ph.D.; Peter Sobelewski, Ph.D.; Meizan Lai, M.D.; and from the University of Pennsylvania School of Engineering and Applied Sciences, Hoon Choi, Ph.D.; and I-W Chen, Ph.D.


Story Source:

The above story is based on materials provided by Children's Hospital of Philadelphia. Note: Materials may be edited for content and length.


Cite This Page:

Children's Hospital of Philadelphia. "In Blood Vessel Stents, Innovative Materials Allow Better Control, Delivery Of Gene Therapy." ScienceDaily. ScienceDaily, 18 April 2008. <www.sciencedaily.com/releases/2008/04/080415111713.htm>.
Children's Hospital of Philadelphia. (2008, April 18). In Blood Vessel Stents, Innovative Materials Allow Better Control, Delivery Of Gene Therapy. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2008/04/080415111713.htm
Children's Hospital of Philadelphia. "In Blood Vessel Stents, Innovative Materials Allow Better Control, Delivery Of Gene Therapy." ScienceDaily. www.sciencedaily.com/releases/2008/04/080415111713.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins