Featured Research

from universities, journals, and other organizations

First 3-D Image Of Antibody Gene Shown

Date:
April 25, 2008
Source:
University of California - San Diego
Summary:
Using a multidisciplinary mix of geometry, biological research and techniques developed to solve problems on supercomputers, scientists have shown for the first time how a genome is organized in three-dimensional space.

The 3-D structure of the immunoglobulin locus in B cells is shown, with the relative positions of the different portions of the immunoglobulin genes. Grey objects indicate constant regions. Blue objects indicate proximal variable regions. Green objects indicate distal variable regions. Red line indicates the linker connecting the proximal variable and joining regions.
Credit: Image courtesy of University of California - San Diego

Using a multidisciplinary mix of geometry, biological research and techniques developed to solve problems on supercomputers, scientists at the University of California, San Diego have shown for the first time how a genome is organized in three-dimensional space.

Researchers led by Cornelis Murre, a professor of biology at UC San Diego, and Steve Cutchin, senior scientist for visualization services at the San Diego Supercomputer Center (SDSC), used the gene encoding the immunoglobulin heavy chain locus -- responsible for generating diverse kinds of antibodies -- to demonstrate the structure of the genome.

The observations, the researchers say, permit an insight into the structure of the human genome, which until now has remained elusive.

Their results, "The 3-D Structure of the Immunoglobulin Heavy Chain Locus: Implications for Long-Range Genomic Interactions," are published in the April 18 issue of the journal Cell.

Because the genome is the most essential part of the cell for storing and accessing genetic information, the complete DNA sequence of a wide variety of genomes has been revealed in studies performed in a large number of laboratories -- "a tremendous success that has provided insight into mechanisms that underpin the development of a wide variety of diseases," the authors say.

However, Murre said, "it has remained unclear as to how the genome is organized in three-dimensional space. This is an important issue since the regulation of gene expression is controlled by interactions of genomic elements that are separated by large genomic distances. Thus, our team wanted to determine how the genome is structured within the nucleus."

The experiments described in the Cell paper, he said, provide a first glimpse into this question. "As a model system, we used the gene encoding for the immunoglobulin heavy chain locus, because it is responsible for generating the wide diversity of antibodies."

Having measured the distances that separate the various parts of the gene, Murre said, the researchers, in collaboration with Cutchin at the SDSC, then used geometry to resolve the first structure of a genetic locus.

His work, said Cutchin, involved computational geometry, scientific visualization, computational methods and numerical methods.

"The resulting structure shows that the antibody gene is organized into 'flower-like' structures that are connected by linkers," said Murre. "These flowers contain the various parts that ultimately generate the wide variety of antibodies. This is the first time that geometry has been used to determine the structure of a genetic locus. Ultimately, the same approach should be used to elucidate the structure of the entire human genome."

Contributing equally to the work were Suchit Jhunjhunwala, Mandy M. Peak, and Menno C. van Zelm, all with the Division of Biological Sciences at UC San Diego; Roy Riblet of the Torrey Pines Institute for Molecular Studies; Jacques J.M. van Dongen and Frank G. Grosveld of Erasmus MC in Rotterdam, The Netherlands; and Tobias A. Knoch of Heidelberg University, Germany.

Funding for the research was provided by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "First 3-D Image Of Antibody Gene Shown." ScienceDaily. ScienceDaily, 25 April 2008. <www.sciencedaily.com/releases/2008/04/080423131714.htm>.
University of California - San Diego. (2008, April 25). First 3-D Image Of Antibody Gene Shown. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2008/04/080423131714.htm
University of California - San Diego. "First 3-D Image Of Antibody Gene Shown." ScienceDaily. www.sciencedaily.com/releases/2008/04/080423131714.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins