Featured Research

from universities, journals, and other organizations

Young Songbirds Babble Before They Learn To Sing

Date:
May 3, 2008
Source:
Massachusetts Institute of Technology
Summary:
Young songbirds babble before they can mimic an adult's song, much like their human counterparts. Now, in work that offers insights into how birds -- and perhaps people -- learn new behaviors, scientists have found that immature and adult birdsongs are driven by two separate brain pathways, rather than one pathway that slowly matures.

An adult zebra finch with two 4-week-old juveniles.
Credit: Aaron Andalman

Young songbirds babble before they can mimic an adult's song, much like their human counterparts. Now, in work that offers insights into how birds--and perhaps people--learn new behaviors, MIT scientists have found that immature and adult birdsongs are driven by two separate brain pathways, rather than one pathway that slowly matures.

"The babbling during song learning exemplifies the ubiquitous exploratory behavior that we often call play but that is essential for trial-and-error learning," comments Michale Fee, the senior author of the study and a neuroscientist in the McGovern Institute for Brain Research at MIT and an associate professor in MIT's Department of Brain and Cognitive Sciences.

Early on, baby zebra finches produce a highly variable, babbling song. They practice incessantly until they can produce the stereotyped, never-changing song of adults. "This early variability is necessary for learning, so we wanted to determine whether it is produced by an immature adult motor pathway or by some other circuit," Fee explains.

The work is reported in the May 2 issue of Science. Past research has shown that the zebra finch has two distinct brain circuits dedicated to song, one for learning and another -- known as the motor circuit -- for producing the learned song. Damage to the first circuit while the bird is still learning prevents further learning, so the song remains immature. Yet in an adult that has already learned its song, disabling the learning circuit has no effect on song production.

Scientists assumed that the motor circuit is equally important in producing baby birds' babbling, but surprisingly, no one had done the experiments to find out. First author Dmitriy Aronov and co-author Aaron Andalman, both graduate students in Fee's lab, adapted existing techniques previously developed in the Fee lab so that they could temporarily disable parts of the brain, and record from neurons in the singing bird.

The results were surprising.

When they disabled a part of the motor circuit known as HVC in these very young birds, the babies continued to sing, implying that some other brain region produces the babbling. The authors suspected that a key component of the learning circuit, called LMAN, has a previously unknown motor function. They confirmed this by showing that when LMAN was disabled in very young birds, they ceased babbling.

"This tells us that singing is driven by two different motor circuits at different stages of development," explains Aronov. "We've long known that these two pathways develop physiologically at different times, so there's an elegant parallel between our functional findings and what is already known about anatomy."

But what happens to LMAN in adulthood, after birds have learned their song? Contrary to the "use it or lose it" assumption, the authors found that LMAN retains its ability to drive babbling even in adulthood. Disrupting HVC in adults caused the birds to revert immediately to babbling, suggesting that LMAN can take over again if the more powerful signals from HVC are blocked.

Fee speculates that these results may apply more broadly to other forms of immature or exploratory behavior, in humans as well as birds. "In birds, the exploratory phase ends when learning is complete," he says. "But we humans can always call upon our equivalent of LMAN, the prefrontal cortex, to be innovative and learn new things."

The NIH and graduate fellowships from the Hertz Foundation (D.A.) and the Friends of the McGovern Institute (A.A.) funded this study.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Young Songbirds Babble Before They Learn To Sing." ScienceDaily. ScienceDaily, 3 May 2008. <www.sciencedaily.com/releases/2008/05/080501143416.htm>.
Massachusetts Institute of Technology. (2008, May 3). Young Songbirds Babble Before They Learn To Sing. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2008/05/080501143416.htm
Massachusetts Institute of Technology. "Young Songbirds Babble Before They Learn To Sing." ScienceDaily. www.sciencedaily.com/releases/2008/05/080501143416.htm (accessed August 23, 2014).

Share This




More Plants & Animals News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins