Featured Research

from universities, journals, and other organizations

Atmosphere Threatened By Nitrogen Pollutants Entering Ocean

Date:
May 16, 2008
Source:
Texas A&M University
Summary:
A large quantity of nitrogen compounds -- emitted into the atmosphere by humans through the burning of fossil fuels and the use of nitrogen fertilizers -- enters the oceans and may lead to the removal of some carbon dioxide from the atmosphere, concluded a team of international scientists.

Kelp growing in the ocean. Human-caused atmospheric nitrogen compounds are carried by wind and deposited into the ocean, where they act as a fertilizer and lead to increased production of marine plant life.
Credit: iStockphoto/Tammy Peluso

A large quantity of nitrogen compounds -- emitted into the atmosphere by humans through the burning of fossil fuels and the use of nitrogen fertilizers -- enters the oceans and may lead to the removal of some carbon dioxide from the atmosphere, concluded a team of international scientists led by Texas A&M University Distinguished Professor of Oceanography and Atmospheric Sciences Robert Duce.

The team of 30 experts from institutions around the world presented its conclusions in the current issue of the journal Science.

Human-caused atmospheric nitrogen compounds are carried by wind and deposited into the ocean, where they act as a fertilizer and lead to increased production of marine plant life. The increase in plant life causes more carbon dioxide to be drawn from the atmosphere into the ocean. This process results in the removal of about 10 percent of the human-caused carbon dioxide in the atmosphere, thus potentially reducing the climate warming potential, according to the team's paper.

However, some of the nitrogen deposited in the ocean is re-processed to form another nitrogen compound called nitrous oxide, which is then released back into the atmosphere from the ocean. Nitrous oxide is a powerful greenhouse gas itself -- about 300 times more powerful per molecule than carbon dioxide -- thus cancelling out about two-thirds of the apparent gain from the carbon dioxide removal, Duce explained. "But of course, the whole system is so complex that we're still rather unsure about what some of the other impacts might be within the ocean," he said.

In most areas of the ocean, nitrogen is the nutrient that limits the production of plant life, Duce said. So when all of the nitrogen in an area of the surface ocean is used up, no more plant life forms in that area. The team found that human-caused nitrogen deposits account for up to one-third of the external input of nitrogen into the ocean, and this increase in nitrogen available for the production of plant life causes more plants to form, Duce explained.

Oceanic plant life is produced from marine carbon (bicarbonate) in the ocean, and that amount of bicarbonate is in equilibrium with the carbon dioxide in the atmosphere. So when more bicarbonate is used up to produce marine plant life, it disrupts the equilibrium, and carbon dioxide is drawn down to the ocean from the atmosphere to restore the balance, Duce explained.

Thus, the human-caused nitrogen fertilization of the ocean removes some of the most important greenhouse gas -- carbon dioxide -- from the atmosphere, Duce said. This gain, however, is offset by the nitrogen compound, nitrous oxide, that also forms in the ocean due to the nitrogen fertilization and is re-emitted into the atmosphere as a powerful greenhouse gas, he added.

"If you don't consider the impact of human-caused nitrogen when trying to model climate change, you're missing a possibly significant part of the overall carbon cycle as well as the nitrogen cycle," Duce said. "So nitrogen deposition is potentially a very important factor in the climate change issue."

According to the team's calculations, about 54 million tons of nitrogen produced from human activities entered the ocean from the atmosphere in the year 2000. The team also found that the current nitrogen emissions are about 10 times what they were in 1860, Duce said. He added that the amount of nitrogen entering the atmosphere is expected to rise in the coming decades with the increase in demand for energy and fertilizers, and the team estimates that by the year 2030, human-caused nitrogen emissions will have risen to around 62 million tons per year.

"Clearly, there is much that we do not know about the extent and timescale of the impacts of this nitrogen deposition on the oceans and the subsequent feedbacks to the climate system," Duce said. "The implications are complex and interactive, and this is a very important issue that policy makers need to address and that scientists trying to model and understand the future of climate and climate change need to take into consideration."


Story Source:

The above story is based on materials provided by Texas A&M University. Note: Materials may be edited for content and length.


Cite This Page:

Texas A&M University. "Atmosphere Threatened By Nitrogen Pollutants Entering Ocean." ScienceDaily. ScienceDaily, 16 May 2008. <www.sciencedaily.com/releases/2008/05/080515145350.htm>.
Texas A&M University. (2008, May 16). Atmosphere Threatened By Nitrogen Pollutants Entering Ocean. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2008/05/080515145350.htm
Texas A&M University. "Atmosphere Threatened By Nitrogen Pollutants Entering Ocean." ScienceDaily. www.sciencedaily.com/releases/2008/05/080515145350.htm (accessed July 24, 2014).

Share This




More Earth & Climate News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Observation Boat to Protect Cetaceans During Ship Transfer

Observation Boat to Protect Cetaceans During Ship Transfer

AFP (July 22, 2014) As part of the 14-ship convoy that will accompany the Costa Concordia from the port of Giglio to the port of Genoa, there will be a boat carrying experts to look out for dolphins and whales from crossing the path of the Concordia. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
New Orleans Plans to Recycle Cigarette Butts

New Orleans Plans to Recycle Cigarette Butts

AP (July 21, 2014) New Orleans is the first U.S. city to participate in a large-scale recycling effort for cigarette butts. The city is rolling out dozens of containers for smokers to use when they discard their butts. (July 21) Video provided by AP
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
Spectacular Lightning Storm Hits London

Spectacular Lightning Storm Hits London

AFP (July 19, 2014) A spectaCular lightning storm struck the UK overnight Friday. Images of lightning strikes over the Shard and Tower Bridge in central London. Duration: 00:23 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins