Featured Research

from universities, journals, and other organizations

Better Way To Make A Wafer Of Polyethylene

Date:
June 8, 2008
Source:
Wiley-Blackwell
Summary:
Layers of plastic, much thinner than a strand of hair—this type of ultrathin polymer film is of great interest to scientists and engineers. A new method to produce wafer-thin layers of polymer materials, which may be used as protective coatings, has been developed.

A research team led by Stefan Mecking at the University of Konstanz has now developed a new method to produce wafer-thin layers.
Credit: Copyright Wiley-VCH

Layers of plastic, much thinner than a strand of hair—this type of ultrathin polymer film is of great interest to scientists and engineers. Applications include protective coatings, for example. A research team led by Stefan Mecking at the University of Konstanz has now developed a new method to produce wafer-thin layers. The scientists made their films from individual prefabricated nanocrystal building blocks.

The conventional method for the production of ultrathin polymer films (films with a thickness of less than 0.1 m) begins with a dilute solution of the polymer in an organic solvent, which is applied to a surface. In order to break up the crystalline structure of the solid polymer to get it into solution in the first place, high temperatures are usually required. The ordered crystalline layer only forms once the solvent is removed or cooled.

Mecking and his co-workers have taken a completely different approach that works at room temperature and without organic solvents. The polymer of choice was polyethylene (PE), a polymer with a simple chemical structure and a broad spectrum of technical applications ranging from films and packaging materials to technical components or implants. PE is physiologically harmless and environmentally friendly—but has been hard to produce in ultrathin films.

The catalytic polymerization of ethylene with nickel complexes produces aqueous dispersions of crystalline polymer particles. These are individual, separate single crystals consisting of crystalline lamella of about 25x6 nm surrounded by an amorphous (noncrystalline) layer with a thickness of 1 nm. Amorphous domains on the surface are a typical occurrence in polymer crystals. Droplets of this aqueous dispersion are applied to a glass slide and spun at 2000 revolutions per minute (spin coating). Excess liquid is spun away, leaving behind a wafer-thin uniform film with a thickness of 50 nm.

The success of this attractive production technique rests on the amorphous domains around the single crystals in combination with the tiny size of the crystals. Although the amorphous domains only comprise a tiny portion of the volume of the particles, they interact very strongly with each other, holding the individual particles solidly in the film.


Story Source:

The above story is based on materials provided by Wiley-Blackwell. Note: Materials may be edited for content and length.


Journal Reference:

  1. Qiong Tong, Marina Krumova, Stefan Mecking. Crystalline Polymer Ultrathin Films from Mesoscopic Precursors. Angewandte Chemie International Edition, 2008, 47, 4509%u20134511 DOI: 10.1002/anie.200801028

Cite This Page:

Wiley-Blackwell. "Better Way To Make A Wafer Of Polyethylene." ScienceDaily. ScienceDaily, 8 June 2008. <www.sciencedaily.com/releases/2008/06/080603102740.htm>.
Wiley-Blackwell. (2008, June 8). Better Way To Make A Wafer Of Polyethylene. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2008/06/080603102740.htm
Wiley-Blackwell. "Better Way To Make A Wafer Of Polyethylene." ScienceDaily. www.sciencedaily.com/releases/2008/06/080603102740.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins