Featured Research

from universities, journals, and other organizations

Mammalian Neurogenesis Breaks Into The Most Static Brain Region

Date:
June 9, 2008
Source:
Public Library of Science
Summary:
Fifteen years ago, the discovery of adult neurogenesis (the production of new neurons) in the highly static, non-renewable mammalian brain was a breakthrough in neuroscience. Now new neuronal progenitors were found to be produced in the cerebellum of young and adult rabbits. This is rather astonishing since the mammalian cerebellum is known as one of the most static brain regions, wherein microscopic synaptic remodelling has long been considered as the only type of plasticity.

Fifteen years ago, the discovery of adult neurogenesis (the production of new neurons) in the highly static, non-renewable mammalian brain was a breakthrough in neuroscience. Most emphasis was put on the possibility to figure out new strategies for brain repair against the threath of neurodegenerative diseases. Yet, unlike lower vetebrates, which are characterized by widespread postnatal neurogenesis, neurogenic sites in mammals are highly restricted within two very small regions. Hence, the fact that protracted neurogenesis in mammals is an exception rather than the rule slowes down hopes for generalized brain repair.

Work carried out in the recent past at the University of Turin, involving Federico Luzzati and Paolo Peretto at the Department of Animal Biology, and Giovanna Ponti and Luca Bonfanti at the Department of Veterinary Morphophysiology, revealed striking examples of structural plasticity and neurogenesis in the nervous system of rabbits. These Lagomorphs show remarkable differences under the profile of neurogenesis with respect to their close relatives Rodents (mice and rats).

Now, in a work published in PLoS ONE and coordinated by senior author Luca Bonfanti, new neuronal progenitors were found to be produced in the cerebellum of young and adult rabbits. This is rather astonishing since the mammalian cerebellum is known as one of the most static brain regions, wherein microscopic synaptic remodelling has long been considered as the only type of plasticity.

In addition, unlike the two 'classic' neurogenic sites, the 'alternative' neurogenic sites discovered in rabbits are not remnants of embryonic germinal layers. These new cells are produced from neural progenitors localized within the mature brain parenchyma, thus representing a more widespread source of neurons and glial cells. This fact supports the emerging hypothesis that the existence of actively dividing parenchymal cell progenitors could be more interesting than stem cells located in neurogenic sites, at least for future perspectives of brain repair.

Under the functional profile, the unusual neurogenesis observed in rabbits could be related to a relatively longer lifespan of these animals, if compared to the short lived Rodents. This hypothesis opens new fields of research in humans, wherein adult neurogenic sites are known to exist, but less it is known about other regions of their large-sized brain.

The Compagnia di San Paolo, the University of Turin, and the Regione Piemonte funded this study.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ponti et al. Genesis of Neuronal and Glial Progenitors in the Cerebellar Cortex of Peripuberal and Adult Rabbits. PLoS ONE, 2008; 3 (6): e2366 DOI: 10.1371/journal.pone.0002366

Cite This Page:

Public Library of Science. "Mammalian Neurogenesis Breaks Into The Most Static Brain Region." ScienceDaily. ScienceDaily, 9 June 2008. <www.sciencedaily.com/releases/2008/06/080604074911.htm>.
Public Library of Science. (2008, June 9). Mammalian Neurogenesis Breaks Into The Most Static Brain Region. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2008/06/080604074911.htm
Public Library of Science. "Mammalian Neurogenesis Breaks Into The Most Static Brain Region." ScienceDaily. www.sciencedaily.com/releases/2008/06/080604074911.htm (accessed August 29, 2014).

Share This




More Mind & Brain News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins